scholarly journals Activation of Tenofovir Alafenamide and Sofosbuvir in the Human Lung and Its Implications in the Development of Nucleoside/Nucleotide Prodrugs for Treating SARS-CoV-2 Pulmonary Infection

Pharmaceutics ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1656
Author(s):  
Jiapeng Li ◽  
Shuhan Liu ◽  
Jian Shi ◽  
Hao-Jie Zhu

ProTide technology is a powerful tool for the design of nucleoside/nucleotide analog prodrugs. ProTide prodrug design improves cell permeability and enhances intracellular activation. The hydrolysis of the ester bond of a ProTide is a determinant of the intracellular activation efficiency and final antiviral efficacy of the prodrug. The hydrolysis is dictated by the catalytic activity and abundance of activating enzymes. The antiviral agents tenofovir alafenamide (TAF) and sofosbuvir (SBV) are typical ProTides. Both TAF and SBV have also been proposed to treat patients with COVID-19. However, the mechanisms underlying the activation of the two prodrugs in the lung remain inconclusive. In the present study, we profiled the catalytic activity of serine hydrolases in human lung S9 fractions using an activity-based protein profiling assay. We evaluated the hydrolysis of TAF and SBV using human lung and liver S9 fractions and purified enzymes. The results showed that CatA and CES1 were involved in the hydrolysis of the two prodrugs in the human lung. More specifically, CatA exhibited a nearly 4-fold higher hydrolytic activity towards TAF than SBV, whereas the CES1 activity on hydrolyzing TAF was slightly lower than that for SBV. Overall, TAF had a nearly 4-fold higher hydrolysis rate in human lung S9 than SBV. We further analyzed protein expression levels of CatA and CES1 in the human lung, liver, and primary cells of the two tissues using proteomics data extracted from the literature. The relative protein abundance of CatA to CES1 was considerably higher in the human lung and primary human airway epithelial cells than in the human liver and primary human hepatocytes. The findings demonstrated that the high susceptivity of TAF to CatA-mediated hydrolysis resulted in efficient TAF hydrolysis in the human lung, suggesting that CatA could be utilized as a target activating enzyme when designing antiviral ester prodrugs for the treatment of respiratory virus infection.

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1211-1211
Author(s):  
Sandrine Grosbois ◽  
Marie François-Brionne ◽  
Elise Vallée ◽  
Philippe Gautier ◽  
Yohann Repesse ◽  
...  

Abstract Abstract 1211 The development of neutralizing anti-Factor VIII (FVIII) antibodies is the major complication of the treatment of patients with hemophilia A (HA). Several mechanisms of inhibition have been described: steric hindrance, immune complex formation and catalytic antibodies. Anti-FVIII catalytic antibodies act like enzymes and lead to the hydrolysis of FVIII. Lacroix-Desmazes et al. had shown the presence of catalytic antibodies in the plasma of patients with severe HA who had developed inhibitors (13/24) (Lacroix-Desmazes et al, NEJM, 2002). Previous studies on catalytic antibodies reported results for patients with severe HA at one time point, exclusively. Thus, we proposed to extend the analysis of catalytic antibodies to patients with a mild or moderate HA and to follow over their lifetime patients who develop inhibitor. We studied plasma samples from 33 patients with HA. Sixteen were patients with severe HA, including 8 patients with inhibitor (Inh+) and 8 patients without inhibitor (Inh-), and 17 were mild or moderate HA patients (7 Inh+ and 10 Inh-). Among Inh+ patients, 6 were treated on-demand (3 severe and 3 moderate HA patients) and 9 were submitted to an immune tolerance induction (ITI) protocol (4 severe and 5 mild or moderate patients with HA). A therapeutic preparation of pooled normal IgG (IVIg) from healthy donors was used as a source of normal IgG. We also used plasma from 13 male healthy donors. As described previously [2], IgG were purified from plasma by affinity-chromatography on protein G followed by a size-exclusion chromatography in presence of urea. Then, catalytic activity was evaluated by the hydrolysis of FVIII after incubation with purified IgG (Lacroix-Desmazes et al, Nature, 1999). Inhibitor titer is measured by modified Bethesda test. Mean FVIII-hydrolyzing rates were determined for healthy donors, HA patients and IVIg, used as control. Catalytic activity of HA patients IgG was significantly higher than those of healthy donors or IVIg (p<0.01 and p<0.001, respectively). Sixty four per cent of patients with HA had catalytic antibodies, regardless the phenotype nor inhibitor presence. In addition, prevalence of FVIII-hydrolyzing antibodies for Inh+ and Inh- HA patients was 94% and 47%, respectively. However, the mean FVIII-hydrolysis rate was comparable for both groups (0.23 ± 0.06 mmol/min/mol). Surprisingly, we showed that the mean catalytic activity of mild or moderate HA patients were significantly lower than those of severe HA patients (0.17 ± 0.05 versus 0.31 ± 0.07). Interestingly, we were able to study the evolution of both catalytic and inhibitory activities for patients who developed inhibitor. We observed 2 profiles: in the first case, FVIII-hydrolysis rate and inhibitor titer followed the same trend, but in the second case, these two parameters showed a dissociated evolution. These results were independent of the type of treatment (on-demand or ITI). For the first time, we studied catalytic activity for patients with mild or moderate HA. In comparison with patients with severe HA, catalytic activity is much lower for patients with mild or moderate HA. In addition, most of patients with severe HA had FVIII-hydrolytic antibodies (88 %), in contrast with previous studies (50%) (Lacroix-Desmazes et al, NEJM, 2002). In the same way, we showed the presence of catalytic antibodies in patients without inhibitor. Moreover, we studied the evolution of catalytic activity and inhibitor titer over the time for patients with inhibitor and showed that catalytic activity did not necessarily follow the same trend as inhibitory activity. The results suggested that catalytic antibodies could not act like neutralizing antibodies. Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Vol 15 (3) ◽  
pp. 296-303 ◽  
Author(s):  
Swapnil Gaikwad ◽  
Avinash P. Ingle ◽  
Silvio Silverio da Silva ◽  
Mahendra Rai

Background: Enzymatic hydrolysis of cellulose is an expensive approach due to the high cost of an enzyme involved in the process. The goal of the current study was to apply magnetic nanomaterials as a support for immobilization of enzyme, which helps in the repeated use of immobilized enzyme for hydrolysis to make the process cost-effective. In addition, it will also provide stability to enzyme and increase its catalytic activity. Objective: The main aim of the present study is to immobilize cellulase enzyme on Magnetic Nanoparticles (MNPs) in order to enable the enzyme to be re-used for clean sugar production from cellulose. Methods: MNPs were synthesized using chemical precipitation methods and characterized by different techniques. Further, cellulase enzyme was immobilized on MNPs and efficacy of free and immobilized cellulase for hydrolysis of cellulose was evaluated. Results: Enzymatic hydrolysis of cellulose by immobilized enzyme showed enhanced catalytic activity after 48 hours compared to free enzyme. In first cycle of hydrolysis, immobilized enzyme hydrolyzed the cellulose and produced 19.5 ± 0.15 gm/L of glucose after 48 hours. On the contrary, free enzyme produced only 13.7 ± 0.25 gm/L of glucose in 48 hours. Immobilized enzyme maintained its stability and produced 6.15 ± 0.15 and 3.03 ± 0.25 gm/L of glucose in second and third cycle, respectively after 48 hours. Conclusion: This study will be very useful for sugar production because of enzyme binding efficiency and admirable reusability of immobilized enzyme, which leads to the significant increase in production of sugar from cellulosic materials.


Author(s):  
Sara Toja Ortega ◽  
Mario Pronk ◽  
Merle K. de Kreuk

Abstract Complex substrates, like proteins, carbohydrates, and lipids, are major components of domestic wastewater, and yet their degradation in biofilm-based wastewater treatment technologies, such as aerobic granular sludge (AGS), is not well understood. Hydrolysis is considered the rate-limiting step in the bioconversion of complex substrates, and as such, it will impact the utilization of a large wastewater COD (chemical oxygen demand) fraction by the biofilms or granules. To study the hydrolysis of complex substrates within these types of biomass, this paper investigates the anaerobic activity of major hydrolytic enzymes in the different sludge fractions of a full-scale AGS reactor. Chromogenic substrates were used under fully mixed anaerobic conditions to determine lipase, protease, α-glucosidase, and β-glucosidase activities in large granules (>1 mm in diameter), small granules (0.2–1 mm), flocculent sludge (0.045–0.2 mm), and bulk liquid. Furthermore, composition and hydrolytic activity of influent wastewater samples were determined. Our results showed an overcapacity of the sludge to hydrolyze wastewater soluble and colloidal polymeric substrates. The highest specific hydrolytic activity was associated with the flocculent sludge fraction (1.5–7.5 times that of large and smaller granules), in agreement with its large available surface area. However, the biomass in the full-scale reactor consisted of 84% large granules, making the large granules account for 55–68% of the total hydrolytic activity potential in the reactor. These observations shine a new light on the contribution of large granules to the conversion of polymeric COD and suggest that large granules can hydrolyze a significant amount of this influent fraction. The anaerobic removal of polymeric soluble and colloidal substrates could clarify the stable granule formation that is observed in full-scale installations, even when those are fed with complex wastewaters. Key points • Large and small granules contain >70% of the hydrolysis potential in an AGS reactor. • Flocculent sludge has high hydrolytic activity but constitutes <10% VS in AGS. • AGS has an overcapacity to hydrolyze complex substrates in domestic wastewater. Graphical abstract


2016 ◽  
Vol 13 (9) ◽  
pp. 2815-2821 ◽  
Author(s):  
Federico Baltar ◽  
Catherine Legrand ◽  
Jarone Pinhassi

Abstract. Extracellular enzymatic activities (EEAs) are a crucial step in the degradation of organic matter. Dissolved (cell-free) extracellular enzymes in seawater can make up a significant contribution of the bulk EEA. However, the factors controlling the proportion of dissolved EEA in the marine environment remain unknown. Here we studied the seasonal changes in the proportion of dissolved relative to total EEA (of alkaline phosphatase (APase), β-glucosidase (BGase), and leucine aminopeptidase (LAPase)), in the Baltic Sea for 18 months. The proportion of dissolved EEA ranged between 37 and 100, 0 and 100, and 34 and 100 % for APase, BGase, and LAPase, respectively. A consistent seasonal pattern in the proportion of dissolved EEA was found among all the studied enzymes, with values up to 100 % during winter and  <  40 % during summer. A significant negative relation was found between the proportion of dissolved EEA and temperature, indicating that temperature might be a critical factor controlling the proportion of dissolved relative to total EEA in marine environments. Our results suggest a strong decoupling of hydrolysis rates from microbial dynamics in cold waters. This implies that under cold conditions, cell-free enzymes can contribute to substrate availability at large distances from the producing cell, increasing the dissociation between the hydrolysis of organic compounds and the actual microbes producing the enzymes. This might also suggest a potential effect of global warming on the hydrolysis of organic matter via a reduction of the contribution of cell-free enzymes to the bulk hydrolytic activity.


1977 ◽  
Vol 75 (2) ◽  
pp. 235-243 ◽  
Author(s):  
J. P. RENSTON ◽  
T. J. IHRIG ◽  
R. H. RENSTON ◽  
B. GONDOS ◽  
R. J. MORIN

The characteristics and localization of a cholesterol ester hydrolase enzyme in homogenates of whole testis and in isolated seminiferous tubules and interstitial cells of mature rats have been investigated. Hydrolysis of cholesteryl [1-14C]oleate occurred at an optimum pH of 7·0 was linearly related to time up to 5–6 h of incubation and increased linearly up to 0·25 mg protein/incubation. Hydrolytic activity was inhibited by increasing the incubation temperature from 29 to 41 °C and by sonication. Cholesterol ester hydrolase activity/mg protein was three times greater in homogenates of seminiferous tubules than in interstitial cells. Cholesterol ester hydrolase may function to provide precursors for use in seminiferous tubular steroid hormone biosynthesis or germ cell maturation.


1999 ◽  
Vol 30 (3) ◽  
pp. 265-271 ◽  
Author(s):  
Rubens Cruz ◽  
Vinícius D'Arcádia Cruz ◽  
Juliana Gisele Belote ◽  
Marcelo de Oliveira Khenayfes ◽  
Claudia Dorta ◽  
...  

<FONT FACE="Symbol">b</font>-Galactosidase or <FONT FACE="Symbol">b</font>-D-galactoside-galactohydrolase (EC. 3.2.1.23) is an important enzyme industrially used for the hydrolysis of lactose from milk and milk whey for several applications. Lately, the importance of this enzyme was enhanced by its galactosyltransferase activity, which is responsible for the synthesis of transgalactosylated oligosaccharides (TOS) that act as functional foods, with several beneficial effects on consumers. Penicillium simplicissimum, a strain isolated from soil, when grown in semi-solid medium showed good productivity of <FONT FACE="Symbol">b</font>-galactosidase with galactosyltransferase activity. The optimum pH for hydrolysis was in the 4.04.6 range and the optimum pH for galactosyltransferase activity was in the 6.07.0 range. The optimum temperature for hydrolysis and transferase activity was 55-60°C and 50°C, respectively, and the enzyme showed high thermostability for the hydrolytic activity. The enzyme showed a potential for several industrial applications such as removal of 67% of the lactose from milk and 84% of the lactose from milk whey when incubated at their original pH (4.5 and 6.34, respectively) under optimum temperature conditions. When incubated with a 40% lactose solution in 150 mM McIlvaine buffer, pH 4.5, at 55°C the enzyme converted 86.5% of the lactose to its component monosaccharides. When incubated with a 60% lactose solution in the same buffer but at pH 6.5 and 50°C, the enzyme can synthetize up to 30.5% TOS, with 39.5% lactose and 30% monosaccharides remaining in the preparation.


2017 ◽  
Vol 6 (4) ◽  
pp. 96 ◽  
Author(s):  
Hidetaka Noritomi ◽  
Jumpei Nishigami ◽  
Nobuyuki Endo ◽  
Satoru Kato ◽  
Katsumi Uchiyama

We have found that the organic solvent-resistance of Alpha-chymotrypsin (Alpha-CT) is enhanced by adsorbing Alpha-CT onto bamboo charcoal powder (BCP), which is obtained by pyrolyzing bamboo waste under nitrogen atmosphere, and is markedly dependent on the thermodynamic water activity (aw) in organic solvents. When BCP-adsorbed Alpha-CT was immersed in acetonitrile at an appropriate water activity, it effectively enhanced the transesterification of N-acetyl-L-tyrosine ethyl ester (N-Ac-Tyr-OEt) with n-butanol (BuOH) to produce N-acetyl-L-tyrosine butyl ester (N-Ac-Tyr-OBu), compared to the hydrolysis of N-Ac-Tyr-OEt with water to give N-acetyl-L-tyrosine (N-Ac-Tyr-OH). When the water activity was 0.28, the initial rate of transesterification catalyzed by BCP-adsorbed Alpha-CT was about sixty times greater than that catalyzed by free Alpha-CT. Regarding the reaction selectivity which is defined as a ratio of the initial rate of transesterification to that of hydrolysis, BCP-adsorbed α-CT was much superior to free Alpha-CT. The catalytic activity of BCP-adsorbed Alpha-CT was markedly dependent on the reaction temperature. Furthermore, concerning the thermal stability at 50 oC, the half-life of BCP-adsorbed Alpha-CT exhibited 3.8-fold, compared to that of free Alpha-CT.


2020 ◽  
pp. 53-61
Author(s):  
Ansharullah Ansharullah ◽  
Muhammad Natsir

The aims of this study were to characterize the kinetics of enzymatic hydrolysis of sago starch, obtained from Southeast Sulawesi Indonesia. The enzyme used for hydrolysis was bacterial ∝-amylase (Termamyl 120L from Bacillus licheniformis, E. C. 3.2.1.1).  The method to determine the initial velocity (Vo) of the hydrolysis was developed by differentiation a nonlinear equation (NLE).  The Vo of the hydrolysis was measured at various pH (6.0, 6.5,and 7.0), temperatures (40, 60, 75 and 95oC), enzyme concentrations (0.5, 1.0, 1.5 and 2.0 µg per mL) and in the presence of 70 ppm Ca++. The optimum conditions of this experiment were found to be at pH 6.5 – 7.0 and 75oC, and the Vo increased with increasing enzyme concentration. The Vo values at various substrate concentrations were also determined, which were then used to calculate the enzymes kinetics constant of the hydrolysis, including Michaelis-Menten constant (Km) and maximum velocity (Vmax) using a Hanes plot.  Km and Vmax values were found to be higher in the measurement at pH 7.0 and 75oC. The Km values  at four  different combinations of pH and temperatures (pH 6.5, 40oC; pH 6.5, 75oC; pH 7.0, 40oC; pH 7.0, 75oC) were found to be 0.86, 3.23, 0.77 and 3.83 mg/mL, respectively; and Vmax values were 17.5, 54.3, 20.3 and 57.1 µg/mL/min, respectively. The results obtained showed that hydrolysis rate of this starch was somewhat low.


Sign in / Sign up

Export Citation Format

Share Document