scholarly journals Effect of a Fiber D-Limonene-Enriched Food Supplement on Intestinal Microbiota and Metabolic Parameters of Mice on a High-Fat Diet

Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1753
Author(s):  
Maria Chiara Valerii ◽  
Silvia Turroni ◽  
Carla Ferreri ◽  
Michela Zaro ◽  
Anna Sansone ◽  
...  

Several studies showed that D-Limonene can improve metabolic parameters of obese mice via various mechanisms, including intestinal microbiota modulation. Nevertheless, its effective doses often overcome the acceptable daily intake, rising concerns about toxicity. In this study we administered to C57BL/6 mice for 84 days a food supplement based on D-Limonene, adsorbed on dietary fibers (FLS), not able to reach the bloodstream, to counteract the metabolic effects of a high-fat diet (HFD). Results showed that daily administration of D-Limonene (30 and 60 mg/kg body weight) for 84 days decreased the weight gain of HFD mice. After 84 days we observed a statistically significant difference in weight gain in the group of mice receiving the higher dose of FLS compared to HFD mice (35.24 ± 4.56 g vs. 40.79 ± 3.28 g, p < 0.05). Moreover, FLS at both doses tested was capable of lowering triglyceridemia and also fasting glycemia at the higher dose. Some insights on the relevant fatty acid changes in hepatic tissues were obtained, highlighting the increased polyunsaturated fatty acid (PUFA) levels even at the lowest dose. FLS was also able to positively modulate the gut microbiota and prevent HFD-associated liver steatosis in a dose-dependent manner. These results demonstrate that FLS at these doses can be considered non-toxic and could be an effective tool to counteract diet-induced obesity and ameliorate metabolic profile in mice.

2011 ◽  
Vol 301 (6) ◽  
pp. R1738-R1747 ◽  
Author(s):  
Matthew Lynes ◽  
Sonoko Narisawa ◽  
José Luis Millán ◽  
Eric P. Widmaier

The mechanisms of the saturable component of long-chain fatty acid (LCFA) transport across the small intestinal epithelium and its regulation by a high-fat diet (HFD) are uncertain. It is hypothesized here that the putative fatty acid translocase/CD36 and intestinal alkaline phosphatases (IAPs) function together to optimize LCFA transport. Phosphorylated CD36 (pCD36) was expressed in mouse enterocytes and dephosphorylated by calf IAP (CIAP). Uptake of fluorescently tagged LCFA into isolated enteroctyes was increased when cells were treated with CIAP; this was blocked with a specific CD36 inhibitor. pCD36 colocalized in enterocytes with the global IAP (gIAP) isozyme and, specifically, coimmunoprecipitated with gIAP, but not the duodenal-specific isozyme (dIAP). Purified recombinant gIAP dephosphorylated immunoprecipitated pCD36, and antiserum to gIAP decreased initial LCFA uptake in enterocytes. Body weight, adiposity, and plasma leptin and triglycerides were significantly increased in HFD mice compared with controls fed a normal-fat diet. HFD significantly increased immunoreactive CD36 and gIAP, but not dIAP, in jejunum, but not duodenum. Uptake of LCFA was increased in a CD36-dependent manner in enterocytes from HFD mice. It is concluded that CD36 exists in its phosphorylated and dephosphorylated states in mouse enterocytes, that pCD36 is a substrate of gIAP, and that dephosphorylation by IAPs results in increased LCFA transport capability. HFD upregulates CD36 and gIAP in parallel and enhances CD36-dependent fatty acid uptake. The interactions between these proteins may be important for efficient fat transport in mouse intestine, but whether the changes in gIAP and CD36 in enterocytes contribute to HFD-induced obesity remains to be determined.


Endocrinology ◽  
2006 ◽  
Vol 147 (3) ◽  
pp. 1508-1516 ◽  
Author(s):  
David Patsouris ◽  
Janardan K. Reddy ◽  
Michael Müller ◽  
Sander Kersten

Peroxisome proliferator-activated receptors (PPARs) are transcription factors involved in the regulation of numerous metabolic processes. The PPARα isotype is abundant in liver and activated by fasting. However, it is not very clear what other nutritional conditions activate PPARα. To examine whether PPARα mediates the effects of chronic high-fat feeding, wild-type and PPARα null mice were fed a low-fat diet (LFD) or high-fat diet (HFD) for 26 wk. HFD and PPARα deletion independently increased liver triglycerides. Furthermore, in wild-type mice HFD was associated with a significant increase in hepatic PPARα mRNA and plasma free fatty acids, leading to a PPARα-dependent increase in expression of PPARα marker genes CYP4A10 and CYP4A14. Microarray analysis revealed that HFD increased hepatic expression of characteristic PPARα target genes involved in fatty acid oxidation in a PPARα-dependent manner, although to a lesser extent than fasting or Wy14643. Microarray analysis also indicated functional compensation for PPARα in PPARα null mice. Remarkably, in PPARα null mice on HFD, PPARγ mRNA was 20-fold elevated compared with wild-type mice fed a LFD, reaching expression levels of PPARα in normal mice. Adenoviral overexpression of PPARγ in liver indicated that PPARγ can up-regulate genes involved in lipo/adipogenesis but also characteristic PPARα targets involved in fatty acid oxidation. It is concluded that 1) PPARα and PPARα-signaling are activated in liver by chronic high-fat feeding; and 2) PPARγ may compensate for PPARα in PPARα null mice on HFD.


2018 ◽  
Vol 239 (2) ◽  
pp. 229-240 ◽  
Author(s):  
A Feraco ◽  
A Armani ◽  
R Urbanet ◽  
A Nguyen Dinh Cat ◽  
V Marzolla ◽  
...  

Obesity is a major risk factor that contributes to the development of cardiovascular disease and type 2 diabetes. Mineralocorticoid receptor (MR) expression is increased in the adipose tissue of obese patients and several studies provide evidence that MR pharmacological antagonism improves glucose metabolism in genetic and diet-induced mouse models of obesity. In order to investigate whether the lack of adipocyte MR is sufficient to explain these beneficial metabolic effects, we generated a mouse model with inducible adipocyte-specific deletion of Nr3c2 gene encoding MR (adipo-MRKO). We observed a significant, yet not complete, reduction of Nr3c2 transcript and MR protein expression in subcutaneous and visceral adipose depots of adipo-MRKO mice. Notably, only mature adipocyte fraction lacks MR, whereas the stromal vascular fraction maintains normal MR expression in our mouse model. Adipo-MRKO mice fed a 45% high-fat diet for 14 weeks did not show any significant difference in body weight and fat mass compared to control littermates. Glucose and insulin tolerance tests revealed that mature adipocyte MR deficiency did not improve insulin sensitivity in response to a metabolic homeostatic challenge. Accordingly, no significant changes were observed in gene expression profile of adipogenic and inflammatory markers in adipose tissue of adipo-MRKO mice. Moreover, pharmacological MR antagonism in mature primary murine adipocytes, which differentiated ex vivo from WT mice, did not display any effect on adipokine expression. Taken together, these data demonstrate that the depletion of MR in mature adipocytes displays a minor role in diet-induced obesity and metabolic dysfunctions.


2017 ◽  
Vol 42 (11) ◽  
pp. 1179-1184 ◽  
Author(s):  
Lin Yan ◽  
Sneha Sundaram ◽  
Forrest H. Nielsen

This study investigated the effect of voluntary running of defined distances on body adiposity in male C57BL/6 mice fed a high-fat diet. Mice were assigned to 6 groups and fed a standard AIN93G diet (sedentary) or a modified high-fat AIN93G diet (sedentary; unrestricted running; or 75%, 50%, or 25% of unrestricted running) for 12 weeks. The average running distance was 8.3, 6.3, 4.2, and 2.1 km/day for the unrestricted, 75%, 50%, and 25% of unrestricted runners, respectively. Body adiposity was 46% higher in sedentary mice when fed the high-fat diet instead of the standard diet. Running decreased adiposity in mice fed the high-fat diet in a dose-dependent manner but with no significant difference between sedentary mice and those running 2.1 km/day. In sedentary mice, the high-fat instead of the standard diet increased insulin resistance, hepatic triacylglycerides, and adipose and plasma concentrations of leptin and monocyte chemotactic protein-1 (MCP-1). Running reduced these variables in a dose-dependent manner. Adipose adiponectin was lowest in sedentary mice fed the high-fat diet; running raised adiponectin in both adipose tissue and plasma. Running 8.3 and 6.3 km/day had the greatest, but similar, effects on the aforementioned variables. Running 2.1 km/day did not affect these variables except, when compared with sedentariness, it significantly decreased MCP-1. The findings showed that running 6.3 kg/day was optimal for reducing adiposity and associated inflammation that was increased in mice by feeding a high-fat diet. The findings suggest that voluntary running of defined distances may counteract the obesogenic effects of a high-fat diet.


Nutrients ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 1015 ◽  
Author(s):  
Nguyen Khoi Song Tran ◽  
Goon-Tae Kim ◽  
Si-Hyun Park ◽  
Dongyup Lee ◽  
Soon-Mi Shim ◽  
...  

Nonalcoholic fatty liver diseases (NAFLD) is characterized by accumulation of lipid droplets in the liver. The objective of this study was to evaluate protective effects of fermented Cordyceps militaris extract by Pediococcus pentosaceus ON188 (ONE) against hepatosteatosis and obesity in mice fed a high-fat diet (HFD). Eight-week-old male C57BL/6J mice were fed HFD mixed with ONE for four weeks and its effects on hepatosteatosis and obesity were examined. Although ONE did not change food intake, it reduced body weights of mice at administration dose of 200 mg/kg/day. Activities of lactate dehydrogenase (LDH), aspartate transaminase (AST), and alanine transaminase (ALT) as plasma parameters were reduced by ONE in a dose-dependent manner. Hepatic lipid droplets and triglyceride (TG) levels were also reduced by ONE due to upregulation of fatty acid oxidizing genes such as carnithine palmitoyltransferase (CPT1) and peroxisomal proliferator activated receptor α(PPARα) mediated by induction of sphingosine kinase 2 (SPHK2). In epididymal fat tissue, sizes of adipocytes were significantly reduced by ONE in a dose-dependent manner. This is mainly due to suppression of lipogenesis and upregulation of adipocyte browning genes. Collectively, these results suggest that fermented ONE can activate fatty acid oxidation via SPHK2 in the liver. It can also suppress lipogenesis and activate browning in adipose tissue. Thus, ONE might have potential to be used for the development of functional foods against liver dysfunction and obesity.


2018 ◽  
Vol 14 (1) ◽  
pp. 55-62 ◽  
Author(s):  
M. Ebrahimi ◽  
R. Fathi ◽  
Z. Ansari Pirsaraei ◽  
E. Talebi Garakani ◽  
M. Najafi

Lipogenic and lipolytic pathways are tightly regulated by nuclear receptors and binding proteins, such as farnesoid x receptor (FXR) and sterol regulatory element binding protein 1c (SREBP-1c). We designed this research to study the effects of high-intensity interval training (HIIT) and high-fat diet (HFD) on hepatic and adipose FXR and SREBP-1c gene expression beside the plasma levels of lipid profile and insulin. 24 male Wistar rats were randomly divided into normal (~12% fat) and HFD (~56% fat) groups with or without participating in the 8 weeks HIIT protocol. Results from two-way ANOVA and Pearson tests (P<0.05) showed that the HFD rats experienced a larger weight gain correlated with dyslipidemia and hyperinsulinemia, higher hepatic and adipose SREBP-1c expression and lower hepatic FXR expression compared with normal diet fed rats. Although HIIT rats showed higher hepatic FXR and lower hepatic and adipose SREBP-1c expression and lower weight gain compared with untrained rats, plasma lipid profile levels had not any significant difference between trained and untrained rats. Interestingly, hepatic FXR expression was negatively correlated with weight gain and SREBP-1c expression in both tissues while only the hepatic SREBP-1c was positively correlated to insulin levels. In conclusion, HFD-induced dyslipidemia could occur via the activation of the hepatic SREBP-1c pathway under the insulin effect. Although HIIT rats showed lower SREBP-1c correlated to hepatic FXR activation it seems diet is more effective on lipid profile than HIIT. Also, in presence of HFD, HIIT only affects adipose lipolysis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lihong Hao ◽  
Nicholas T. Bello

Raspberry ketone [4-(4-hydroxyphenyl)-2-butanone] is a natural aromatic compound found in raspberries and other fruits. Raspberry ketone (RK) is synthetically produced for use as a commercial flavoring agent. In the United States and other markets, it is sold as a dietary supplement for weight control. The potential of RK to reduce or prevent excessive weight gain is unclear and could be a convergence of several different actions. This study sought to determine whether acute RK can immediately delay carbohydrate hyperglycemia and reduce gastrointestinal emptying. In addition, we explored the metabolic signature of chronic RK to prevent or remedy the metabolic effects of diet-induced weight gain. In high-fat diet (HFD; 45% fat)-fed male mice, acute oral gavage of RK (200 mg/kg) reduced hyperglycemia from oral sucrose load (4 g/kg) at 15 min. In HFD-fed female mice, acute oral RK resulted in an increase in blood glucose at 30 min. Chronic daily oral gavage of RK (200 mg/kg) commencing with HFD access (HFD_RK) for 11 weeks resulted in less body weight gain and reduced fat mass compared with vehicle treated (HFD_Veh) and chronic RK starting 4 weeks after HFD access (HFD_RKw4) groups. Compared with a control group fed a low-fat diet (LFD; 10% fat) and dosed with vehicle (LFD_Veh), glucose AUC of an oral glucose tolerance test was increased with HFD_Veh, but not in HFD_RK or HFD_RKw4. Apelin (Apln) gene expression in epididymal white adipose tissue was increased in HFD_Veh, but reduced to LFD_Veh levels in the HFD_RK group. Peroxisome proliferator activated receptor alpha (Ppara) gene expression was increased in the hepatic tissue of HFD_RK and HFD_RKw4 groups. Overall, our findings suggest that long term daily use of RK prevents diet-induced weight gain, normalizes high-fat diet-induced adipose Apln, and increases hepatic Ppara expression.


2021 ◽  
Author(s):  
Tanja Jene ◽  
Inigo Ruiz de Azua ◽  
Annika Hasch ◽  
Jennifer Klüpfel ◽  
Julia Deuster ◽  
...  

Stress has a major impact on the modulation of metabolism, as previously evidenced by hyperglycemia following chronic social defeat (CSD) stress in mice. Although CSD-triggered metabolic dysregulation might predispose to pre-diabetic conditions, insulin sensitivity remained intact, and obesity did not develop, when animals were fed with a standard diet (SD). Here, we investigated whether a nutritional challenge, a high fat diet (HFD), aggravates the metabolic phenotype, and whether there are particularly sensitive time windows for the negative consequences of HFD exposure. Chronically stressed male mice and controls (CTRL) were kept under (i) SD-conditions, (ii) with HFD commencing post-CSD, or (iii) provided with HFD lasting throughout, and after CSD. Under SD conditions, stress increased glucose levels early post-CSD. Both HFD regimens increased glucose levels in non-stressed mice, but not in stressed mice. Nonetheless, when HFD was provided after CSD, stressed mice did not differ from controls in long-term body weight gain, fat tissue mass and plasma insulin, and leptin levels. In contrast, when HFD was continuously available, stressed mice displayed reduced body weight gain, lowered plasma levels of insulin, and leptin, and reduced white adipose tissue weights as compared to their HFD-treated non-stressed controls. Interestingly, stress-induced adrenal hyperplasia and hypercortisolemia were observed in mice treated with SD and with HFD after CSD, but not in stressed mice exposed to a continuous HFD treatment. The present work demonstrates that CSD can reduce HFD-induced metabolic dysregulation. Hence, HFD during stress may act beneficially, as comfort food, by decreasing stress-induced metabolic demands.


Nutrients ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 767 ◽  
Author(s):  
Kristen E. Boyle ◽  
Margaret J. Magill-Collins ◽  
Sean A. Newsom ◽  
Rachel C. Janssen ◽  
Jacob E. Friedman

Overweight and obesity accompanies up to 70% of pregnancies and is a strong risk factor for offspring metabolic disease. Maternal obesity-associated inflammation and lipid profile are hypothesized as important contributors to excess offspring liver and skeletal muscle lipid deposition and oxidative stress. Here, we tested whether dams expressing the fat-1 transgene, which endogenously converts omega-6 (n-6) to omega-3 (n-3) polyunsaturated fatty acid, could protect wild-type (WT) offspring against high-fat diet induced weight gain, oxidative stress, and disrupted mitochondrial fatty acid oxidation. Despite similar body mass at weaning, offspring from fat-1 high-fat-fed dams gained less weight compared with offspring from WT high-fat-fed dams. In particular, WT males from fat-1 high-fat-fed dams were protected from post-weaning high-fat diet induced weight gain, reduced fatty acid oxidation, or excess oxidative stress compared with offspring of WT high-fat-fed dams. Adult offspring of WT high-fat-fed dams exhibited greater skeletal muscle triglycerides and reduced skeletal muscle antioxidant defense and redox balance compared with offspring of WT dams on control diet. Fat-1 offspring were protected from the reduced fatty acid oxidation and excess oxidative stress observed in offspring of WT high-fat-fed dams. These results indicate that a maternal fat-1 transgene has protective effects against offspring liver and skeletal muscle lipotoxicity resulting from a maternal high-fat diet, particularly in males. Altering maternal fatty acid composition, without changing maternal dietary composition or weight gain with high-fat feeding, may highlight important strategies for n-3-based prevention of developmental programming of obesity and its complications.


Sign in / Sign up

Export Citation Format

Share Document