scholarly journals Combined Curcumin and Lansoprazole-Loaded Bioactive Solid Self-Nanoemulsifying Drug Delivery Systems (Bio-SSNEDDS)

Pharmaceutics ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 2
Author(s):  
Abdulrahman Alshadidi ◽  
Ahmad Abdul-Wahhab Shahba ◽  
Ibrahim Sales ◽  
Md Abdur Rashid ◽  
Mohsin Kazi

Background: The current study aimed to design a novel combination of lansoprazole (LNS) and curcumin (CUR) solid oral dosage form using bioactive self-nanoemulsifying drug delivery systems (Bio-SSNEDDS). Methods: Liquid SNEDDS were prepared using the lipid-excipients: Imwitor988 (cosurfactant), Kolliphor El (surfactant), the bioactive black seed (BSO) and/or zanthoxylum rhetsa seed oils (ZRO). Liquid SNEDDS were loaded with CUR and LNS, then solidified using commercially available (uncured) and processed (cured) Neusilin® US2 (NUS2) adsorbent. A novel UHPLC method was validated to simultaneously quantify CUR and LNS in lipid-based formulations. The liquid SNEDDS were characterized in terms of self-emulsification, droplet size and zeta-potential measurements. The solidified SNEDDS were characterized by differential scanning calorimetry (DSC), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), in vitro dissolution and stability in accelerated storage conditions. Results: Liquid SNEDDS containing BSO produced a transparent appearance and ultra-fine droplet size (14 nm) upon aqueous dilution. The solidified SNEDDS using cured and uncured NUS2 showed complete solidification with no particle agglomeration. DSC and XRD confirmed the conversion of crystalline CUR and LNS to the amorphous form in all solid SNEDDS samples. SEM images showed that CUR/LNS-SNEDDS were relatively spherical and regular in shape. The optimized solid SNEDDS showed higher percent of cumulative release as compared to the pure drugs. Curing NUS2 with 10% PVP led to significant enhancement of CUR and LNS dissolution efficiencies (up to 1.82- and 2.75-fold, respectively) compared to uncured NUS2-based solid SNEDDS. These findings could be attributed to the significant (50%) reduction in the micropore area% in cured NUS2 which reflects blocking very small pores allowing more space for the self-emulsification process to take place in the larger-size pores. Solid SNEDDS showed significant enhancement of liquid SNEDDS stability after 6 months storage in accelerated conditions. Conclusions: The developed Bio-SSNEDDS of CUR and LNS using processed NUS2 could be used as a potential combination therapy to improve the treatment of peptic ulcers.

2020 ◽  
Vol 19 (5) ◽  
pp. 360-373 ◽  
Author(s):  
Panoraia I. Siafaka ◽  
Ece Ö. Bülbül ◽  
Gökce Mutlu ◽  
Mehmet E. Okur ◽  
Ioannis D. Karantas ◽  
...  

Alzheimer's disease is a neuropathological disease with symptoms such as language problems, confusion as to place or time, loss of interest in activities, which were previously enjoyed, behavioral changes, and memory loss. Alzheimer's disease and other types of dementia affect almost 46.8 million people globally and are estimated to strike about 131.5 million people in 2050. It has been reported that Alzheimer's is the sixth main cause of mortality. The most used drugs, which are currently approved by the Food, and Drug Administration for Alzheimer’s disease are donepezil, rivastigmine, galantamine, memantine, and the combination of donepezil and memantine. However, most of the drugs present various adverse effects. Recently, the transdermal drug delivery route has gained increasing attention as an emerging tool for Alzheimer's disease management. Besides, transdermal drug delivery systems seem to provide hope for the management of various diseases, due to the advantages that they offer in comparison with oral dosage forms. Herein, the current advancements in transdermal studies with potent features to achieve better Alzheimer's disease management are presented. Many researchers have shown that the transdermal systems provide higher efficiency since the first-pass hepatic metabolism effect can be avoided and a prolonged drug release rate can be achieved. In summary, the transdermal administration of Alzheimer's drugs is an interesting and promising topic, which should be further elaborated and studied.


Author(s):  
SARIPILLI RAJESWARI ◽  
VANAPALLI SWAPNA

Microsponges (MSPs) are at the forefront of the rapidly developing field of novel drug delivery systems which are gaining popularity due to their use for controlled release and targeted drug delivery. The microsponge delivery system (MDS) is a patented polymeric system consisting of porous microspheres typically 10-25 microns in diameter, loaded with an active agent. They are tiny sponge-like spherical particles that consist of a myriad of interconnecting voids within a non-collapsible structure with a large porous surface through which active ingredient is released in a controlled manner. Microsponge also hold a certification as one of the potential approaches for gastric retention where many oral dosage forms face several physiological restrictions due to non-uniform absorption pattern, inadequate medication release and shorter residence time in the stomach. This type of drug delivery system which is non-irritating, non-allergic, non-toxic, can suspend or entrap a wide variety of substances, and can then be incorporated into a formulated product such as gel, cream, liquid or powder that is why it is called as a “versatile drug delivery system”. It overcomes the drawbacks of other formulations such as frequency of dosing, drug reaction, incompatibility with environmental condition. These porous microspheres were exclusively designed for chronotherapeutic topical drug delivery but attempt to utilize them for oral, pulmonary and parenteral drug delivery were also made. The present review elaborates about the multifunctional microsponge technology including its preparation, characterization, evaluation methods along with recent research and future potential.


Author(s):  
Satbir Singh ◽  
Tarun Virmani ◽  
Reshu Virmani ◽  
Geeta Mahlawat ◽  
Pankaj Kumar

The Fast Dissolving Drug Delivery Systems sets a new benchmark was an expansion that came into existence in the early 1980’s and combat over the use of the different dosage form like tablets, suspension, syrups, capsules which are the other oral drug delivery systems. Fast Dissolving Drug Delivery System (FDTS)  has a major advantage over the conventional dosage forms since the drug gets rapidly disintegrated and dissolves in the saliva without the use of water .In spite of the downside lack of immediate onset of action; these oral dosage forms have valuable purposes such as self medication, increased patient compliance, ease of manufacturing and lack of pain. Hence Fast Disintegrating Tablets (FDTS) technology has been gaining importance now-a-days with wide variety of drugs serving many purposes. Fast Disintegrating Tablets (FDTS) has ever increased their demand in the last decade since they disintegrate in saliva in less than a minute that improved compliance in pediatrics and geriatric patients, who have difficulty in swallowing tablets or liquids. As fast dissolving tablet provide instantaneous disintegration after putting it on tongue, thereby rapid drug absorption and instantaneous bioavailability, whereas Fast dissolving oral films are used as practical alternative to FDTS. These films have a potential to deliver the drug systemically through intragastric, sublingual or buccal route of administration and also has been used for local action. In present review article different aspects of fast dissolving  tablets and films like method of preparations, latest technologies, evaluation parameters are discussed. This study will be useful for the researchers for their lab work.  


2020 ◽  
Vol 149 ◽  
pp. 21-29 ◽  
Author(s):  
Caroline Alvebratt ◽  
Janneke Keemink ◽  
Khadijah Edueng ◽  
Ocean Cheung ◽  
Maria Strømme ◽  
...  

Pharmaceutics ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 75 ◽  
Author(s):  
Joana Magalhães ◽  
Luise L. Chaves ◽  
Alexandre C. Vieira ◽  
Susana G. Santos ◽  
Marina Pinheiro ◽  
...  

This work aims to optimize and assess the potential use of lipid nanoparticles, namely nanostructured lipid carriers (NLCs), as drug delivery systems of rifapentine (RPT) for the treatment of tuberculosis (TB). A Box–Behnken design was used to increase drug encapsulation efficiency (EE) and loading capacity (LC) of RPT-loaded NLCs. The optimized nanoparticles were fully characterized, and their effect on cell viability was assessed. The quality-by-design approach allowed the optimization of RPT-loaded NLCs with improved EE and LC using the minimum of experiments. Analyses of variance were indicative of the validity of this model to optimize this nanodelivery system. The optimized NLCs had a mean diameter of 242 ± 9 nm, polydispersity index <0.2, and a highly negative zeta potential. EE values were higher than 80%, and differential scanning calorimetry analysis enabled the confirmation of the efficient encapsulation of RPT. Transmission electron microscopy analysis showed spherical nanoparticles, uniform in shape and diameter, with no visible aggregation. Stability studies indicated that NLCs were stable over time. No toxicity was observed in primary human macrophage viability for nanoparticles up to 1000 μg mL−1. Overall, the optimized NLCs are efficient carriers of RPT and should be considered for further testing as promising drug delivery systems to be used in TB treatment.


Sign in / Sign up

Export Citation Format

Share Document