scholarly journals Imination of Microporous Chitosan Fibers—A Route to Biomaterials with “On Demand” Antimicrobial Activity and Biodegradation for Wound Dressings

Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 117
Author(s):  
Alexandru Anisiei ◽  
Irina Rosca ◽  
Andreea-Isabela Sandu ◽  
Adrian Bele ◽  
Xinjian Cheng ◽  
...  

Microporous chitosan nanofibers functionalized with different amounts of an antimicrobial agent via imine linkage were prepared by a three-step procedure including the electrospinning of a chitosan/PEO blend, PEO removal and acid condensation reaction in a heterogeneous system with 2-formylphenylboronic acid. The fibers’ characterization was undertaken keeping in mind their application to wound healing. Thus, by FTIR and 1H-NMR spectroscopy, it was confirmed the successful imination of the fibers and the conversion degree of the amine groups of chitosan into imine units. The fiber morphology in terms of fiber diameter, crystallinity, inter- and intra-fiber porosity and strength of intermolecular forces was investigated using scanning electron microscopy, polarized light microscopy, water vapor sorption and thermogravimetric analysis. The swelling ability was estimated in water and phosphate buffer by calculating the mass equilibrium swelling. The fiber biodegradation was explored in five media of different pH, corresponding to different stages of wound healing and the antimicrobial activity against the opportunistic pathogens inflicting wound infection was investigated according to standard tests. The biocompatibility and bioadhesivity were studied on normal human dermal fibroblast cells by direct contact procedure. The dynamic character of the imine linkage of the functionalized fibers was monitored by UV-vis spectroscopy. The results showed that the functionalization of the chitosan microporous nanofibers with antimicrobial agents via imine linkage is a great route towards bio-absorbable wound dressings with “on demand” antimicrobial properties and biodegradation rate matching the healing stages.

Polymers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2959 ◽  
Author(s):  
Sindi P. Ndlovu ◽  
Kwanele Ngece ◽  
Sibusiso Alven ◽  
Blessing A. Aderibigbe

Wound care is a major biomedical field that is challenging due to the delayed wound healing process. Some factors are responsible for delayed wound healing such as malnutrition, poor oxygen flow, smoking, diseases (such as diabetes and cancer), microbial infections, etc. The currently used wound dressings suffer from various limitations, including poor antimicrobial activity, etc. Wound dressings that are formulated from biopolymers (e.g., cellulose, chitin, gelatin, chitosan, etc.) demonstrate interesting properties, such as good biocompatibility, non-toxicity, biodegradability, and attractive antimicrobial activity. Although biopolymer-based wound dressings display the aforementioned excellent features, they possess poor mechanical properties. Gelatin, a biopolymer has excellent biocompatibility, hemostatic property, reduced cytotoxicity, low antigenicity, and promotes cellular attachment and growth. However, it suffers from poor mechanical properties and antimicrobial activity. It is crosslinked with other polymers to enhance its mechanical properties. Furthermore, the incorporation of antimicrobial agents into gelatin-based wound dressings enhance their antimicrobial activity in vitro and in vivo. This review is focused on the development of hybrid wound dressings from a combination of gelatin and other polymers with good biological, mechanical, and physicochemical features which are appropriate for ideal wound dressings. Gelatin-based wound dressings are promising scaffolds for the treatment of infected, exuding, and bleeding wounds. This review article reports gelatin-based wound dressings which were developed between 2016 and 2021.


2020 ◽  
Vol 13 (05) ◽  
pp. 2030012 ◽  
Author(s):  
Zhimei Wei ◽  
Liqun Wang ◽  
Shouyu Zhang ◽  
Tonghai Chen ◽  
Jie Yang ◽  
...  

Bacterial infections are a major cause of chronic infections. Thus, antibacterial material is an urgent need in clinics. Antibacterial nanofibers, with expansive surface area, enable efficient incorporation of antibacterial agents. Meanwhile, structure similar to the extracellular matrix can accelerate cell growth. Electrospinning, the most widely used technique to fabricate nanofiber, is often used in many biomedical applications including drug delivery, regenerative medicine, wound healing and so on. Thus, this review provides an overview of all recently published studies on the development of electrospun antibacterial nanofibers in wound dressings and tissue medicinal fields. This reviewer begins with a brief introduction of electrospinning process and then discusses electrospun fibers by incorporating various types of antimicrobial agents used as in wound dressings and tissue. Finally, we finish with conclusions and further perspectives on electrospun antibacterial nanofibers as 2D biomedicine materials.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Woan Sean Tan ◽  
Palanisamy Arulselvan ◽  
Shiow-Fern Ng ◽  
Che Norma Mat Taib ◽  
Murni Nazira Sarian ◽  
...  

Chronic wounds represent serious globally health care and economic issues especially for patients with hyperglycemic condition. Wound dressings have a predominant function in wound treatment; however, the dressings for the long-lasting and non-healing wounds are still a significant challenge in the wound care management market. Astonishingly, advanced wound dressing which is embedded with a synthetic drug compound in a natural polymer compound that acts as drug release carrier has brought about promising treatment effect toward injured wound. In the current study, results have shown that Vicenin-2 (VCN-2) compound in low concentration significantly enhanced cell proliferation and migration of HDF. It also regulated the production of pro-inflammatory cytokines such as IL-6, IL-1β, and TNF-α from HDF in wound repair. Treatment of VCN-2 also has facilitated the expression of TGF-1β and VEGF wound healing maker in a dose-dependent manner. A hydrocolloid film based on sodium alginate (SA) incorporated with VCN-2 synthetic compound which targets to promote wound healing particularly in diabetic condition was successfully developed and optimized for its physico-chemical properties. It was discovered that all the fabricated film formulations prepared were smooth, translucent, and good with flexibility. The thickness and weight of the formulations were also found to be uniform. The hydrophilic polymer comprised of VCN-2 were shown to possess desirable wound dressing properties and superior mechanical characteristics. The drug release profiles have revealed hydrocolloid film, which is able to control and sustain the VCN-2 released to wound area. In short, hydrocolloid films consisting of VCN-2 formulations are suitably used as a potential wound dressing to promote restoration of wound injury.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 183
Author(s):  
Mariana F. P. Graça ◽  
Duarte de Melo-Diogo ◽  
Ilídio J. Correia ◽  
André F. Moreira

Despite all the efforts that have been done up to now, the currently available wound dressings are still unable to fully re-establish all the structural and functional properties of the native skin. To overcome this situation, researchers from the tissue engineering area have been developing new wound dressings (hydrogels, films, sponges, membranes) aiming to mimic all the features of native skin. Among them, asymmetric membranes emerged as a promising solution since they reproduce both epidermal and dermal skin layers. Wet or dry/wet phase inversion, scCO2-assisted phase inversion, and electrospinning have been the most used techniques to produce such a type of membranes. Among them, the electrospinning technique, due to its versatility, allows the development of multifunctional dressings, using natural and/or synthetic polymers, which resemble the extracellular matrix of native skin as well as address the specific requirements of each skin layer. Moreover, various therapeutic or antimicrobial agents have been loaded within nanofibers to further improve the wound healing performance of these membranes. This review article provides an overview of the application of asymmetric electrospun membranes as wound dressings displaying antibacterial activity and as delivery systems of biomolecules that act as wound healing enhancers.


Foods ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1801
Author(s):  
Ludmila Motelica ◽  
Denisa Ficai ◽  
Anton Ficai ◽  
Roxana-Doina Truşcă ◽  
Cornelia-Ioana Ilie ◽  
...  

New packaging materials based on biopolymers are gaining increasing attention due to many advantages like biodegradability or existence of renewable sources. Grouping more antimicrobials agents in the same packaging can create a synergic effect, resulting in either a better antimicrobial activity against a wider spectrum of spoilage agents or a lower required quantity of antimicrobials. In the present work, we obtained a biodegradable antimicrobial film that can be used as packaging material for food. Films based on chitosan as biodegradable polymer, with ZnO and Ag nanoparticles as filler/antimicrobial agents were fabricated by a casting method. The nanoparticles were loaded with citronella essential oil (CEO) in order to enhance the antimicrobial activity of the nanocomposite films. The tests made on Gram-positive, Gram-negative, and fungal strains indicated a broad-spectrum antimicrobial activity, with inhibition diameters of over 30 mm for bacterial strains and over 20 mm for fungal strains. The synergic effect was evidenced by comparing the antimicrobial results with chitosan/ZnO/CEO or chitosan/Ag/CEO simple films. According to the literature and our preliminary studies, these formulations are suitable as coating for fruits. The obtained nanocomposite films presented lower water vapor permeability values when compared with the chitosan control film. The samples were characterized by SEM, fluorescence and UV-Vis spectroscopy, FTIR spectroscopy and microscopy, and thermal analysis.


2021 ◽  
pp. 088391152110539
Author(s):  
Mohammad RK Abdel-Samad ◽  
Fatma A Taher

Wounds management takes a high interest in the medical field and the addition of antimicrobial agents in an assortment of wound dressings leads to delay the wound healing. This study aimed at preparing natural combination between excretion/secretion (ES) and water-soluble chitosan nanoparticles (from Lucilia cuprina maggots) and investigating its antibacterial and wound healing activities. ES of maggots was collected, and the water-soluble chitosan nanoparticles (WSCNPs) were prepared and characterized. Antibacterial activities of combinations were evaluated against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Proteus vulgaris. ES-WSC-2 combination that contains 50% ES and 1% WSCNPs showed highest antibacterial activity against all tested bacteria compared to the other combinations. In vitro, the ES-WSC-2 combination was used to study the wound healing activity by scratch assay. The synergism between ES and WSCNPs (in ES-WSC-2 combination) accelerated the wound healing rate which suggests the use of this combination as an effective natural antibacterial and wound healing agent.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2270
Author(s):  
Longhao Jin ◽  
Kyeongsoon Park ◽  
Yihyun Yoon ◽  
Hyeon Soo Kim ◽  
Hyeon Ji Kim ◽  
...  

Infection is one of several factors that can delay normal wound healing. Antibacterial wound dressings can therefore promote normal wound healing. In this study, we prepared an antibacterial wound dressing, consisting of visible light-cured methacrylated collagen (ColMA) hydrogel and a 2-hydroxypropyl-beta-cyclodextrin (HP-β-CD)/triclosan (TCS) complex (CD-ic-TCS), and evaluated its wound healing effects in vivo. The 1H NMR spectra of ColMA and CD-ic-TCS revealed characteristic peaks at 1.73, 5.55, 5.94, 6.43, 6.64, 6.84, 6.95, 7.31, and 7.55 ppm, indicating successful preparation of the two material types. In addition, ultraviolet–visible (UV–vis) spectroscopy proved an inclusion complex formation between HP-β-CD and TCS, judging by a unique peak observed at 280 cm−1. Furthermore, ColMA/CD-ic-TCS exhibited an interconnected porous structure, controlled release of TCS, good biocompatibility, and antibacterial activity. By in vivo animal testing, we found that ColMA/CD-ic-TCS had a superior wound healing capacity, compared to the other hydrocolloids evaluated, due to synergistic interaction between ColMA and CD-ic-TCS. Together, our findings indicate that ColMA/CD-ic-TCS has a clinical potential as an antibacterial wound dressing.


Membranes ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 908
Author(s):  
Aysegul Gul ◽  
Izabela Gallus ◽  
Akshat Tegginamath ◽  
Jiri Maryska ◽  
Fatma Yalcinkaya

Chronic wounds are caused by bacterial infections and create major healthcare discomforts; to overcome this issue, wound dressings with antibacterial properties are to be utilized. The requirements of antibacterial wound dressings cannot be fulfilled by traditional wound dressing materials. Hence, to improve and accelerate the process of wound healing, an antibacterial wound dressing is to be designed. Electrospun nanofibers offer a promising solution to the management of wound healing, and numerous options are available to load antibacterial compounds onto the nanofiber webs. This review gives us an overview of some recent advances of electrospun antibacterial nanomaterials used in wound dressings. First, we provide a brief overview of the electrospinning process of nanofibers in wound healing and later discuss electrospun fibers that have incorporated various antimicrobial agents to be used in wound dressings. In addition, we highlight the latest research and patents related to electrospun nanofibers in wound dressing. This review also aims to concentrate on the importance of nanofibers for wound dressing applications and discuss functionalized antibacterial nanofibers in wound dressing.


2019 ◽  
Vol 20 (23) ◽  
pp. 5889 ◽  
Author(s):  
Matica ◽  
Aachmann ◽  
Tøndervik ◽  
Sletta ◽  
Ostafe

Fighting bacterial resistance is one of the concerns in modern days, as antibiotics remain the main resource of bacterial control. Data shows that for every antibiotic developed, there is a microorganism that becomes resistant to it. Natural polymers, as the source of antibacterial agents, offer a new way to fight bacterial infection. The advantage over conventional synthetic antibiotics is that natural antimicrobial agents are biocompatible, non-toxic, and inexpensive. Chitosan is one of the natural polymers that represent a very promising source for the development of antimicrobial agents. In addition, chitosan is biodegradable, non-toxic, and most importantly, promotes wound healing, features that makes it suitable as a starting material for wound dressings. This paper reviews the antimicrobial properties of chitosan and describes the mechanisms of action toward microbial cells as well as the interactions with mammalian cells in terms of wound healing process. Finally, the applications of chitosan as a wound-dressing material are discussed along with the current status of chitosan-based wound dressings existing on the market.


Sign in / Sign up

Export Citation Format

Share Document