scholarly journals PLGA/PEG Nanoparticles Loaded with Cyclodextrin-Peganum harmala Alkaloid Complex and Ascorbic Acid with Promising Antimicrobial Activities

Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 142
Author(s):  
Sherif Ashraf Fahmy ◽  
Noha Khalil Mahdy ◽  
Hadeer Al Mulla ◽  
Aliaa Nabil ElMeshad ◽  
Marwa Y. Issa ◽  
...  

Antimicrobial drugs face numerous challenges, including drug resistance, systemic toxic effects, and poor bioavailability. To date, treatment choices are limited, which warrants the search for novel potent antivirals, including those extracted from natural products. The seeds of Peganum harmala L. (Zygophyllaceae family) have been reported to have antimicrobial, antifungal, and anticancer activities. In the present study, a 2-hydroxy propyl-β-cyclodextrin (HPβCD)/harmala alkaloid-rich fraction (HARF) host–guest complex was prepared using a thin-film hydration method to improve the water solubility and bioavailability of HARF. The designed complex was then co-encapsulated with ascorbic acid into PLGA nanoparticles coated with polyethylene glycol (HARF–HPßCD/AA@PLGA-PEG NPs) using the W/O/W multiple emulsion-solvent evaporation method. The average particle size, PDI, and zeta potential were 207.90 ± 2.60 nm, 0.17 ± 0.01, and 31.6 ± 0.20 mV, respectively. The entrapment efficiency for HARF was 81.60 ± 1.20% and for ascorbic acid was 88 ± 2.20%. HARF–HPßCD/AA@PLGA-PEG NPs had the highest antibacterial activity against Staphylococcus aureus and Escherichia coli (MIC of 0.025 mg/mL). They also exhibited high selective antiviral activity against the H1N1 influenza virus (IC50 2.7 μg/mL) without affecting the host (MDCK cells). In conclusion, the co-encapsulation of HPCD–HARF complex and ascorbic acid into PLGA-PEG nanoparticles significantly increased the selective H1N1 killing activity with minimum host toxic effects.

Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 808
Author(s):  
Ahmed Al Saqr ◽  
El-Sayed Khafagy ◽  
Ahmed Alalaiwe ◽  
Mohammed F. Aldawsari ◽  
Saad M. Alshahrani ◽  
...  

Green synthesis of gold nanoparticles (GNPs) with plant extracts has gained considerable interest in the field of biomedicine. Recently, the bioreduction nature of herbal extracts has helped to synthesize spherical GNPs of different potential from gold salt. In this study, a fast ecofriendly method was adopted for the synthesis of GNPs using fresh peel (aqueous) extracts of Benincasa hispida, which acted as reducing and stabilizing agents. The biosynthesized GNPs were characterized by UV–VIS and Fourier transform infrared spectroscopy, transmission electron microscopy (TEM), and dynamic light scattering. In addition, the in vitro antibacterial and anticancer activities of synthesized GNPs were investigated. The formation of gold nanoparticles was confirmed by the existence of a sharp absorption peak at 520 nm, corresponding to the surface plasmon resonance (SPR) band of the GNPs. TEM analysis revealed that the prepared GNPs were spherical in shape and had an average particle size of 22.18 ± 2 nm. Most importantly, the synthesized GNPs exhibited considerable antibacterial activity against different Gram-positive and Gram-negative bacteria. Furthermore, the biosynthesized GNPs exerted remarkable in vitro cytotoxicity against human cervical cancer cell line, while sparing normal human primary osteoblast cells. Such cytotoxic effect was attributed to the increased production of reactive oxygen species (ROS) that contributed to the damage of HeLa cells. Collectively, peel extracts of B. hispida can be efficiently used for the synthesis of GNPs, which can be adopted as a natural source of antimicrobial and anticancer agent.


2017 ◽  
Vol 6 (6) ◽  
pp. 517-526 ◽  
Author(s):  
Permender Rathee ◽  
Anjoo Kamboj ◽  
Shabir Sidhu

AbstractBackground:Piperine helps in the improvement of bioavailability through pharmacokinetic interaction by modulating metabolism when administered with other drugs. Nisoldipine is a substrate for cytochrome P4503A4 enzymes. The study was undertaken to assess the influence of piperine on the pharmacokinetics and pharmacodynamics of nisoldipine nanoparticles in rats.Methods:Optimization studies of nanoparticles were performed using Taguchi L9 orthogonal array, and the nanoparticles were formulated by the precipitation method. The influence of piperine and nanoparticles was evaluated by means of in vivo kinetic and dynamic studies by oral administration in rats.Results:The entrapment efficiency, drug loading, ζ potential, and average particle size of optimized nisoldipine-piperine nanoparticles was 89.77±1.06%, 13.6±0.56%, −26.5 mV, and 132±7.21 nm, respectively. The in vitro release in 0.1 n HCl and 6.8 pH phosphate buffer was 96.9±0.48% and 98.3±0.26%, respectively. Pharmacokinetic studies showed a 4.9-fold increase in oral bioavailability and a >28.376±1.32% reduction in systemic blood pressure by using nanoparticles as compared to control (nisoldipine suspension) in Wistar rats.Conclusion:The results revealed that piperine being an inhibitor of cytochrome P4503A4 enzymes enhanced the bioavailability of nisoldipine by 4.9-fold in nanoparticles.


Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1040
Author(s):  
Nurhanisah Othman ◽  
Siti Nurul Ain Md. Jamil ◽  
Mas Jaffri Masarudin ◽  
Luqman Chuah Abdullah ◽  
Rusli Daik ◽  
...  

Encapsulation of dual compounds of different characters (hydrophilic and hydrophobic) in single nanoparticles carrier could reach the site of action more accurately with the synergistic effect but it is less investigated. In our previous findings, combined-compounds encapsulation and delivery from chitosan nanoparticles were impaired by the hydrophilicity of chitosan. Therefore, hydrophobic modification on chitosan with palmitic acid was conducted in this study to provide an amphiphilic environment for better encapsulation of antioxidants; hydrophobic thymoquinone (TQ) and hydrophilic l-ascorbic acid (LAA). Palmitoyl chitosan nanoparticles (PCNPs) co-loaded with TQ and LAA (PCNP-TQ-LAA) were synthesized via the ionic gelation method. Few characterizations were conducted involving nanosizer, Fourier-transform infrared spectroscopy (FTIR), field-emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HRTEM). UV–VIS spectrophotometry was used to analyze the encapsulation and release efficiency of the compounds in PCNPs. Successfully modified PCNP-TQ-LAA had an average particle size of 247.7 ± 24.0 nm, polydispersity index (PDI) of 0.348 ± 0.043 and zeta potential of 19.60 ± 1.27 mV. Encapsulation efficiency of TQ and LAA in PCNP-TQ-LAA increased to 64.9 ± 5.3% and 90.0 ± 0%, respectively. TQ and LAA in PCNP-TQ-LAA system showed zero-order release kinetics, with a release percentage of 97.5% and 36.1%, respectively. Improved preparation method, encapsulation and release efficiency in this study are anticipated to be beneficial for polymeric nanocarrier development.


Author(s):  
ARTI MAJUMDAR ◽  
NIDHI DUBEY ◽  
NITIN DUBEY

Objective: The aim of the present study is to develop docetaxel-loaded nano liquid crystals (NLCs) to enhanced and effective delivery of the drug to the skin cancer. Methods: NLCs bearing docetaxel were prepared by an emulsification solvent diffusion method. The formulated NLCs were characterized for average particle size, polydispersity index (PDI) Zeta potential, entrapment efficiency and in vitro drug release study. The prepared formulations were studied for it's in vitro cell line and cell uptake study. Results: It was revealed that the average size of NLCs was found 178.3±5.07, PDI was 0.189, percent entrapment efficiency was found 71.3±2.49 and Zeta potential was found-17.3±2.4. In vitro release determined by Franz diffusion cell was found 61.6±3.2% after 72 hr. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay shows that Docetaxel loaded NLCs were giving more cytotoxicity as compared to the plain drug. The cell uptake study was found enhanced uptake of fluorescein isothiocyanate (FITC) loaded NLCs in comparison to plain FITC. Docetaxel and docetaxel-loaded NLCs showed 28.3±0.3 and 39.3±1.3 growth inhibition respectively after 48h upon incubation at 0.5 µg/ml concentration (p<0.05). Conclusion: The result of the studies was concluded that NLCs can be used as impending drug delivery system which may enhance the drug uptake and maintain the drug level for longer period of time and it is potential carrier system which can be used for the treatment of skin diseases like cancer.


Author(s):  
Nilesh S. Kulkarni ◽  
Mukta A. Kulkarni ◽  
Rahul H. Khiste ◽  
Mohini C. Upadhye ◽  
Shashikant N. Dhole

Aim: The present investigation is to formulate and evaluate gastroretentive floating microspheres for sumatriptan succinate. Gastric retention is widely used approach to retain dosage form in stomach and to enhance absorption of drugs. Methods: The gastroretentive floating microspheres was prepared by two different techniques as solvent evaporation and W/O/W multiple emulsion technique. Ethyl cellulose, HPMC K4M polymer and mucilage extracted from Vigna Mungo in various proportions were used for formulation of microspheres. Combination of ethyl acetate and acetone in different proportion was used as organic phase and the microspheres were characterized for particle size, shape, morphology, percentage yield, entrapment efficiency, drug loading, In-Vitro Floating/Buoyancy study, In-vitro Floating/Buoyancy study and release kinetics. Results: The average particle size of all batches was found in the range 100 to 210 μm and the entrapment efficiency of all formulations was found in the range of 17.46 % to 59.28 %.Total floating time for Sumatriptan succinate floating microspheres was observed more than 12 h. The In-Vitro drug release study was performed for all formulations showed drug release in controlled manner. Conclusion: The particle size was increased with increased polymer concentration and it showed that polymer concentration has an impact on the entrapment efficiency. Ethyl cellulose microspheres showed more entrapment and sustained delivery of sumatriptan Succinate than microspheres prepared by combination of Ethyl cellulose: HPMC K4M and Ethyl cellulose: Vigna mungo mucilage.


2021 ◽  
Vol 37 (2) ◽  
pp. 405-412
Author(s):  
Mohamed Habib Oueslati ◽  
Lotfi Ben Tahar ◽  
A. Khuzaim Alzahrani ◽  
Jamith Basha ◽  
Omar H. Abd Elkader

The present work reports a green biosynthesis of gold nano particles (EO-AuNPs) using an essential oil (EO) as a reducing agent of the Au(III) in HAuCl4. The EO was extracted by hydro-distillation from Diplotaxis acris flowers. A total of 16 compounds were detected from the EO oil by using GC–MS and 5-methylsulfanylpentanenitrile was identified as the major component (73.60 %). The biosynthesized EO-AuNPs were characterized performing UV–Vis, IR,XRD and TEM analyses.The UV-Vis revealed the typical features of surface plasmon resonance (SPR) of AuNPs at ~526 nm. The FT-IR spectrum of the biosynthesized nano particles exhibited the features of the nitrile (-C≡N) functional group indicating that the -C≡N-bearing EO components are likely acting as reducing and stabilizing agents for the formation of EO-AuNPs. The plausible scheme of EO-AuNPsformation was proposed.The TEM analysis showed that the EO- AuNPs were almost spherical in shape with an average particle size of 12.7 nm. In addition, the antimicrobial activity was carried out by diffusion of agar wells method. The results proved that the EO-AuNPs displayed a potential antimicrobial against gram negative strains, with a maximum zone of inhibition of 16 mm for E. coli at a concentration of 100 µg / ml.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2149 ◽  
Author(s):  
Zélia Alves ◽  
Cláudia Nunes ◽  
Paula Ferreira

The diversity of zinc oxide (ZnO) particles and derived composites applications is highly dependent on their structure, size, morphology, defect amounts, and/or presence of dopant molecules. In this work, ZnO nanostructures are grown in situ on graphene oxide (GO) sheets by an easily implementable solvothermal method with simultaneous reduction of GO. The effect of two zinc precursors (zinc acetate (ZA) and zinc acetate dihydrate (ZAD)), NaOH concentration (0.5, 1 or 2 M), and concentration (1 and 12.5 mg/mL) and pH (pH = 1, 4, 8, and 12) of GO suspension were evaluated. While the ZnO particle morphology shows to be precursor dependent, the average particle size length decreases with lower NaOH concentration, as well as with the addition of a higher basicity and concentration of GO suspension. A lowered band gap and a higher specific surface area are obtained from the ZnO composites with higher amounts of GO suspension. Otherwise, the low concentration and the higher pH of GO suspension induce more lattice defects on the ZnO crystal structure. The role of the different condition parameters on the ZnO nanostructures and their interaction with graphene sheets was observed to tune the ZnO–rGO nanofiller properties for photocatalytic and antimicrobial activities.


2019 ◽  
Vol 10 ◽  
pp. 1826-1832 ◽  
Author(s):  
Mohammad A Obeid ◽  
Ibrahim Khadra ◽  
Abdullah Albaloushi ◽  
Margaret Mullin ◽  
Hanin Alyamani ◽  
...  

Curcumin, a natural chemical compound found in Curcuma longa that has been used in antitumor and anti-inflammation applications, exhibits very limited water solubility and rapid in vivo degradation, which limits its clinical application. To overcome these limitations, niosome nanoparticles were prepared by microfluidic mixing for curcumin encapsulation. Niosome nanoparticles are lipid-based, and composed of non-ionic surfactants with cholesterol orientated into a membrane bilayer structure. Two different non-ionic surfactants were used and the mixing parameters were varied to optimize the characteristics of the prepared niosomes. The prepared niosomes had an average particle size of 70–230 nm depending on the type of non-ionic surfactant used and the mixing parameter. Moreover, all prepared niosomes were monodisperse with an average polydispersity index ranging from 0.07 to 0.3. All prepared niosomes were spherical as demonstrated by transmission electron microscopy. Curcumin was encapsulated with a maximum encapsulation efficiency of around 60% using Tween 85 as the non-ionic surfactant. Niosomes prepared by microfluidic mixing provided a controlled release of curcumin, as indicated by the release profile of curcumin, improving its therapeutic capability. These results demonstrate that niosomes prepared by microfluidic mixing to encapsulate curcumin are a promising delivery system to reach target cells.


Author(s):  
GOWTHAMI B ◽  
NIHITHA S ◽  
SANTHI PRIYA NAGAM ◽  
RAMA RAO NADENDLA

Objective: The objective of the current work was to develop Pioglitazone hydrochloride (HCl) pellets coated with natural polymer extracted from peas gum and also to compare the drug release profile with coatings containing semi-synthetic and synthetic polymers. Methods: Fluidized bed coating technique was used to develop pellets. A 22 factorial design was employed to study the effect of independent variables (inlet air temperature and spray rate), on dependent variables (percentage entrapment efficiency, percentage friability, and average particle size). Optimization was done by fitting experimental data to the software program. Obtained pellets were subjected to different evaluation parameters which are critical in the development of the dosage form. An in vitro lag phase study was carried out for all batches in simulated gastric fluid (0.1N HCl) for 5 h and in vitro drug release study was carried out for optimized batch (E-2 and P-3) in simulated intestinal fluid (pH 7.4 phosphate buffer). Results: The optimized batches E-2 and P-3 showed satisfactory percentage entrapment efficiency of 92.66±1.52, percentage friability of 0.57±0.03, and average particle size of 1424±16 μm. All batches maintained lag phase for 5 h in 0.1N HCl. An optimized batch of two different sizes exhibited a burst release within 30 min in a simulated intestinal fluid with no significant difference in release rate constant (*p>0.05) and followed first-order kinetics. Conclusion: Thus, Pioglitazone HCl pulsatile pellets were successfully developed for treating diabetes mellitus by fluidized bed coating technique employing factorial design.


2020 ◽  
Vol 17 (2) ◽  
pp. 159-173
Author(s):  
Qinqin Liu ◽  
Hongmei Xia ◽  
Yinxiang Xu ◽  
Yongfeng Cheng ◽  
Zhiqing Cheng

Objective: Paeonol is a phenolic compounce that is volatile. In order to decrease its volatility and achieve controlled release, paeonol-loaded liposome in carbomer hydrogel was prepared by coating with soybean phospholipid via ethanol injection method and then added into the carbomer hydrogel. Methods: The quality of paeonol-loaded liposome in carbomer hydrogel was evaluated by the degree of roundness, particle size distribution, zeta potential, entrapment efficiency (filtration method and chitosan neutralization method), viscosity, infrared spectrum, etc. Furthermore, the diffusion from paeonolloaded liposome in hydrogel was studied in vitro. Results: The results showed that the average particle size of paeonol-loaded liposome was about 401 nm, the potential was -17.8 mV, and the entrapment efficiency was above 45%. The viscosity of paeonol- loaded liposome in hydrogel was 23.972×10-3 Pa*s, and the diffusion rate from paeonol-loaded liposome in hydrogel in vitro was obviously slower than that from the other paeonol preparations. Conclusion: The conclusions could be drawn that paeonol-loaded liposome in hydrogel was a kind of novel preparation, and its diffusion in vitro had obvious controlled-release characteristics, which further proved that it might improve the bioavailability of paeonol.


Sign in / Sign up

Export Citation Format

Share Document