scholarly journals Medicinal Properties and In Vitro Biological Activities of Selected Helichrysum Species from South Africa: A Review

Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1566
Author(s):  
Kolajo Adedamola Akinyede ◽  
Christopher Nelson Cupido ◽  
Gail Denise Hughes ◽  
Oluwafemi Omoniyi Oguntibeju ◽  
Okobi Eko Ekpo

The genus Helichrysum Mill comprises hundreds of species that are mostly flowering perennial shrubs. Some of these plants that belong to the Helichrysum species are used in traditional medicine to treat cough, back pain, diabetes, asthma, digestive problems, menstrual pain, chest pain, kidney disorders, skin disorders, wounds, open sores, among other conditions, but, only a few scientific studies are reported in the literature with sufficient information that validates the acclaimed folkloric benefits of these plants. This review, therefore, provides a comprehensive update of the available information on the cytotoxicity, genotoxicity, anti-proliferative, anti-bacterial, anti-fungal, anti-viral, anti-HIV, anti-malarial, anti-ulcerogenic, anti-tyrosinase, anti-inflammatory, and anti-oxidant activities of selected Helichrysum species of interest: H. petiolare, H. cymocum, H. foetidum, and H. pandurifolium Schrank, using scientific databases as well as electronic and print sources. The ethnobotanical and morphological characteristics as well as the phytochemical composition and biological activities of these plants are elucidated. The scientific rationale for their current use is discussed based on the evidence in the literature. This review highlights the putative use of the Helichrysum species as a reliable source of bioactive compounds for the production of standard commercial drugs to treat many ailments, including those reported in folkloric uses. Further research on the many plants in the genus Helichrysum is recommended to explore their economic importance both as edible crops and medicinal botanicals.

2018 ◽  
Vol 15 (2) ◽  
pp. 127-135 ◽  
Author(s):  
Parvesh Singh ◽  
Nomandla Ngcoya ◽  
Ramgopal Mopuri ◽  
Nagaraju Kerru ◽  
Neha Manhas ◽  
...  

Background: Diabetes Mellitus (DM) is a complex metabolic disease illustrated by abnormally high levels of plasma glucose or hyperglycaemia. Accordingly, several α-glucosidase inhibitors have been developed for the treatment of diabetes and other degenerative disorders. While, a coumarin ring has the privilege to represent numerous natural and synthetic compounds with a wide spectrum of biological activities e.g. anti-cancer, anti-HIV, anti-viral, anti-malarial, anti-microbial, anti-convulsant, anti-hypertensive properties. Besides this, coumarins have also shown potential to inhibit α-glucosidase leading to a generation of new promising antidiabetic agents. However, the testing of O-substituted coumarins for α-glucosidase inhibition has evaded the attention of medicinal chemists. Methods: For O-alkylation/acetylation reactions, the hydroxyl coumarins (A-B) initially activated by K2CO3 in dry DMF were reacted with variedly substituted haloalkanes at room temperature under nitrogen. The synthesized compounds were tested for their α-glucosidase (from Saccharomyces cerevisiae) inhibitory activity and anti-oxidant activity using DPPH radical scavenging activity. In silico docking simulations were conducted using CDocker module in DS (Accelrys) to explore the binding modes of the representative compounds in the catalytic site of α-glucosidase. Results: All the coumarin analogues (A1, B1, A2-A10, B2-B8) including their precursors (A-B) were evaluated for their in vitro α-glucosidase inhibition using acarbose as a standard inhibitor. All the mono O-alkylated coumarins (except A1) showed significant (p <0.05) α-glucosidase inhibition relative to the hydroxyl coumarin (A) with IC50 values ranging between 11.084±0.117 to 145.24± 29.22 µg/mL. Compound 7-(benzyloxy)-4, 5-dimethyl-2H-chromen-2-one (A9) bearing a benzyl group (Ph-CH2-) at position 7 showed a remarkable (p <0.05) increase in the activity (IC50 = 11.084±0.117 µg/mL), almost four-fold more than acarbose (IC50 = 40.578±5.999 µg/mL). The introduction of –NO2 group dramatically improved the anti-oxidant activity of coumarin, while the O-alkylation/acetylation decreased the activity. Conclusion: The present study describes the synthesis of functionalized coumarins and their evaluation for α-glucosidase inhibition and antioxidant activity under in vitro conditions. Based on IC50 data, the mono O-alkylated coumarins were observed to be stronger inhibitors of α-glucosidase with respect to their bis O-alkylated analogues. Coumarin (A9) bearing O-benzyloxy group displayed the strongest α-glucosidase inhibition, even higher than the standard inhibitor acarbose. The coumarin (A10) bearing –NO2 group showed the highest anti-oxidant activity amongst the synthesized compounds, almost comparable to the ascorbic acid. Finally, in silico docking simulations revealed the role of hydrogen bonding and hydrophobic forces in locking the compounds in catalytic site of α-glucosidase.


Author(s):  
Iqra Sarfraz ◽  
Azhar Rasul ◽  
Ghulam Hussain ◽  
Muhammad Ajmal Shah ◽  
Bushra Nageen ◽  
...  

: Oxalis corniculata (Oxalidaceae) is a small decumbent and delicate appearing medicinal herb flourishing in warm temperate and tropical domains such as Pakistan and India. Main bioactive chemical constituents of Oxalis plant include several alkaloids, flavonoids, terpenoids, cardiac glycosides, saponins, phlobatannins along with steroids. Due to its polyphenolic, glycosides and flavonoid profile, it is proved to be protective in numerous ailments and exhibit various biological activities such as anti-fungal, anti-cancer, anti-oxidant, anti-bacterial, anti-diabetic, and cardioprotective. Moreover, bioactive phytochemicals from this plant possess significant wound healing potential. Our current effort intends to emphasize on the immense significance of this plant species, which have not been the subject matter of clinical trials and effective pharmacological studies, even though its favored usage has been stated. This review proposes that Oxalis corniculata possess potential for the cure of various diseases, however, further researches on isolation and characterization of bioactive compounds along with pre-clinical trials are compulsory to figure out its pharmacological applications.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Ting-ye Wang ◽  
Jia-xu Chen

Curcumin is a compound extracted from the Curcuma longa L, which possesses a wide range of pharmacological effects. However, few studies have collected scientific evidence on its dual effect on angiogenesis. The present review gathered the fragmented information available in the literature to discuss the dual effect and possible mechanisms of curcumin on angiogenesis. Available information concerning the effect of curcumin on angiogenesis is compiled from scientific databases, including PubMed and Web of Science using the key term (curcumin and angiogenesis). The results were reviewed to identify relevant articles. Related literature demonstrated that curcumin has antiangiogenesis effect via regulating multiple factors, including proangiogenesis factor VEGF, MMPs, and FGF, both in vivo and in vitro, and could promote angiogenesis under certain circumstances via these factors. This paper provided a short review on bidirectional action of curcumin, which should be useful for further study and application of this compound that require further studies.


2017 ◽  
Vol 45 (05) ◽  
pp. 933-964 ◽  
Author(s):  
Chengyao Ma ◽  
Yayun Chen ◽  
Jianwei Chen ◽  
Xiang Li ◽  
Yong Chen

Annona squamosa L. (Annonaceae) is a fruit tree with a long history of traditional uses. A. squamosa is an evergreen plant mainly located in tropical and subtropical regions. Srikayas, the fruits of A. squamosa, are extensively used to prepare candies, ice creams and beverages. A wide range of ethno-medicinal uses has been related to different portions of A. squamosa, such as tonic, apophlegmatisant, cool medicine, abortient and heart sedative. Numerous research projects on A. squamosa have found that it has anticancer, anti-oxidant, antidiabetic, antihypertensive, hepatoprotective, antiparasitic, antimalarial, insecticidal, microbicidel and molluscicidal activities. Phytochemistry investigations on A. squamosa have considered annonaceous acetogenins (ACGs), diterpenes (DITs), alkaloids (ALKs) and cyclopeptides (CPs) as the main constituents. Until 2016, 33 DITs, 19 ALKs, 88 ACGs and 13 CPs from this species were reported. On the basis of the multiple researches on A. squamosa, this review strives to integrate available information on its phytochemicals, folklore uses and bioactivities, hoping to promote a better understanding of its medicinal values.


Author(s):  
Oyindamola Vivian Ojulari ◽  
Seul Gi Lee ◽  
Ju-Ock Nam

Present-day lifestyles associated with high calorie-fat intake and accumulation, as well as energy imbalance, has led to the development of obesity and its comorbidities, which have emerged as some of the major health issues globally. To combat the disease, many studies have reported the anti-obesity effects of natural compounds in foods, with some advantages over chemical treatments. Carotenoids, particularly xanthophyll derived from seaweeds, have attracted the attention of researchers due to their notable biological activities, which are associated mainly with their antioxidant properties. Their involvement in oxidative stress modulation, regulation of major transcription factors and enzymes as well as their antagonistic effects on various obesity parameters have been examined in both in-vitro and in-vivo studies. The present review is a collation of published research over the last decade on the anti-oxidant properties of seaweed xanthophyll carotenoids, with a focus on fucoxanthin and astaxanthin and their mechanisms of action in obesity prevention and treatment.


2013 ◽  
Vol 8 (2) ◽  
pp. 1934578X1300800 ◽  
Author(s):  
Biswapriya B. Misra ◽  
Satyahari Dey

Sandalwood oil, rich in sesquiterpenoid alcohols, has been used in traditional medicinal systems as a relaxant and coolant. Besides, sandalwood oil is used as an ingredient in numerous skin fairness enhancing cosmetics. However, there is no available information on biological activities that relate to the above applications. Hence, the anti-tyrosinase and anti-cholinesterase potentials of sandalwood oil were probed by both TLC-bioautographic and colorimetric methods. Results obtained from colorimetric assays indicated that sandalwood oil is a potent inhibitor of tyrosinase (IC50=171 μg mL−1) and cholinesterases (IC50=4.8-58 μg mL−1), in comparison with the positive controls used in the assays, kojic acid and physostigmine, respectively. The TLC-bioautographic assays indicated that α-santalol, the major constituent of the oil, is a strong inhibitor of both tyrosinase and cholinesterase. These in vitro results indicate that there is a great potential of this essential oil for use in the treatment of Alzheimer's disease, as well as in skin-care.


2017 ◽  
Vol 10 ◽  
pp. 117967071769125 ◽  
Author(s):  
Benoite Méry ◽  
Jean-Baptiste Guy ◽  
Alexis Vallard ◽  
Sophie Espenel ◽  
Dominique Ardail ◽  
...  

Cell death plays a crucial role for a myriad of physiological processes, and several human diseases such as cancer are characterized by its deregulation. There are many methods available for both quantifying and qualifying the accurate process of cell death which occurs. Choosing the right assay tool is essential to generate meaningful data, provide sufficient information for clinical applications, and understand cell death processes. In vitro cell death assays are important steps in the search for new therapies against cancer as the ultimate goal remains the elaboration of drugs that interfere with specific cell death mechanisms. However, choosing a cell viability or cytotoxicity assay among the many available options is a daunting task. Indeed, cell death can be approached by several viewpoints and require a more holistic approach. This review provides an overview of cell death assays usually used in vitro for assessing cell death so as to elaborate new potential chemotherapeutics and discusses considerations for using each assay.


2019 ◽  
Vol 9 (4-s) ◽  
pp. 888-892
Author(s):  
K Sai Prasanna ◽  
G Jyothi Reddy ◽  
M Kiran ◽  
K Thyaga Raju

The traditional system of medicinal plants have been found to possess significant anti-inflammatory, antibacterial, anti-fungal, anti-diabetic, analgesic properties etc. Plant-derived drugs are used to cure mental illness, skin diseases, tuberculosis, diabetes, jaundice, hypertension, and cancer. Wedelia Trilobata belongs to family Asteraceae. Leaf, stem, and flower of Wedelia trilobata show anti-microbial, anti-oxidant and anti-inflammatory activity, analgesic activity. Phytochemical screening of the extract has been reported to show the presence of tannins, cardiac glycosides, flavonoids, terpenoids, phenols, saponins, and coumarins. Wedelia Trilobata is also used in reproductive problems, amenorrhea, chest cold, dry cough, and fever. The present review aims to the study was phytoconstituents, biological and pharmacological activities of Wedelia trilobata. This study suggested a possible use of Wedelia trilobata as a source of natural medicines as an anti-inflammatory, anti-oxidant, anti-microbial, hepatoprotective, antidiabetic agents. Keywords: Wedelia Trilobata, Trialing daisy trilobata, Complaya trilobata(L), Sphagneticola Trilobata, pharmacological review.


2020 ◽  
Vol 11 (3) ◽  
pp. 405-409
Author(s):  
Sandeep Binorkar ◽  
Gajanan Parlikar ◽  
Ranjeet Sawant ◽  
Manish Bhoyar ◽  
Milind B Nikumbh

Aristolochia indica is a plant belonging to the family Aristolochiaceae. The medicinal value of A. indica has been known in different system of traditional medicine including Ayurveda. A number of Aristolochia species has been used in herbal medicines throughout the world for the cure of several ailments including metabolic diseases to venomous bites of snake and insects. The current work was executed with an objective to explore the in vitro antimicrobial, anti-fungal and anti-oxidant activity of A. indica. The relevant literature was also pursued for the justification and comparing the resemblances in the results. Aqueous and ethanolic extracts of roots of Aristolochia indica Linn. were tested for their inhibitory effect against 6 bacterial strains [Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Salmonella typhi, Klebsiella pneumoniae & Shigella flexneri] and 3 fungi strains [Aspergillus niger, Aspergillus fumigatus, Candida albicans]. Agar-well method was used for the assessment of in-vitro antibacterial and antifungal activity of A. indica against selected standard bacterial strains. The minimum inhibitory concentration for each extract of various micro-organisms was also measured. Ethanolic extract of A. indica shows Minimum concentration (MIC) value of 50-100 μg/ml against selected bacterial strains which is better when compared to the aqueous extracts. Ethanolic extracts also showed moderate effects against the selected fungal strains, whereas the aqueous extracts failed to exhibit any effect even at higher concentrations.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhongkai Gu ◽  
Yufan Sun ◽  
Feizhen Wu

Pathogenic fungi are recognized as a progressive threat to humans, particularly those with the immunocompromised condition. The growth of fungi is controlled by several factors, one of which is signaling molecules, such as hydrogen sulfide (H2S), which was traditionally regarded as a toxic gas without physiological function. However, recent studies have revealed that H2S is produced enzymatically and endogenously in several species, where it serves as a gaseous signaling molecule performing a variety of critical biological functions. However, the influence of this endogenous H2S on the biological activities occurring within the pathogenic fungi, such as transcriptomic and phenotypic alternations, has not been elucidated so far. Therefore, the present study was aimed to decipher this concern by utilizing S-propargyl-cysteine (SPRC) as a novel and stable donor of H2S and Saccharomyces cerevisiae as a fungal model. The results revealed that the yeast could produce H2S by catabolizing SPRC, which facilitated the growth of the yeast cells. This implies that the additional intracellularly generated H2S is generated primarily from the enhanced sulfur-amino-acid-biosynthesis pathways and serves to increase the growth rate of the yeast, and presumably the growth of the other fungi as well. In addition, by deciphering the implicated pathways and analyzing the in vitro enzymatic activities, cystathionine-γ-lyase (CYS3) was identified as the enzyme responsible for catabolizing SPRC into H2S in the yeast, which suggested that cystathionine-γ-lyase might play a significant role in the regulation of H2S-related transcriptomic and phenotypic alterations occurring in yeast. These findings provide important information regarding the mechanism underlying the influence of the gaseous signaling molecules such as H2S on fungal growth. In addition, the findings provide a better insight to the in vivo metabolism of H2S-related drugs, which would be useful for the future development of anti-fungal drugs.


Sign in / Sign up

Export Citation Format

Share Document