scholarly journals Understanding Wheat Starch Metabolism in Properties, Environmental Stress Condition, and Molecular Approaches for Value-Added Utilization

Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2282
Author(s):  
Kyung-Hee Kim ◽  
Jae Yoon Kim

Wheat starch is one of the most important components in wheat grain and is extensively used as the main source in bread, noodles, and cookies. The wheat endosperm is composed of about 70% starch, so differences in the quality and quantity of starch affect the flour processing characteristics. Investigations on starch composition, structure, morphology, molecular markers, and transformations are providing new and efficient techniques that can improve the quality of bread wheat. Additionally, wheat starch composition and quality are varied due to genetics and environmental factors. Starch is more sensitive to heat and drought stress compared to storage proteins. These stresses also have a great influence on the grain filling period and anthesis, and, consequently, a negative effect on starch synthesis. Sucrose metabolizing and starch synthesis enzymes are suppressed under heat and drought stress during the grain filling period. Therefore, it is important to illustrate starch and sucrose mechanisms during plant responses in the grain filling period. In recent years, most of these quality traits have been investigated through genetic modification studies. This is an attractive approach to improve functional properties in wheat starch. The new information collected from hybrid and transgenic plants is expected to help develop novel starch for understanding wheat starch biosynthesis and commercial use. Wheat transformation research using plant genetic engineering technology is the main purpose of continuously controlling and analyzing the properties of wheat starch. The aim of this paper is to review the structure, biosynthesis mechanism, quality, and response to heat and drought stress of wheat starch. Additionally, molecular markers and transformation studies are reviewed to elucidate starch quality in wheat.

2020 ◽  
Vol 12 (14) ◽  
pp. 5610
Author(s):  
Alireza Pour-Aboughadareh ◽  
Reza Mohammadi ◽  
Alireza Etminan ◽  
Lia Shooshtari ◽  
Neda Maleki-Tabrizi ◽  
...  

Durum wheat performance in the Mediterranean climate is limited when water scarcity occurs before and during anthesis. The present research was performed to determine the effect of drought stress on several physiological and agro-morphological traits in 17 durum wheat genotypes under two conditions (control and drought) over two years. The results of analysis of variance indicated that the various durum wheat genotypes responded differently to drought stress. Drought stress significantly reduced the grain filling period, plant height, peduncle length, number of spikes per plot, number of grains per spike, thousand grains weight, grain yield, biomass, and harvest index in all genotypes compared to the control condition. The heatmap-based correlation analysis indicated that grain yield was positively and significantly associated with phenological characters (days to heading, days to physiological maturity, and grain filling period), as well as number of spikes per plant, biomass, and harvest index under drought conditions. The yield-based drought and susceptible indices revealed that stress tolerance index (STI), geometric mean productivity (GMP), mean productivity (MP), and harmonic mean (HM) were positively and significantly correlated with grain yields in both conditions. Based on the average of the sum of ranks across all indices and a three-dimensional plot, two genotypes (G9 and G12) along with the control variety (G1) were identified as the most tolerant genotypes. Among the investigated genotypes, the new breeding genotype G12 showed a high drought tolerance and yield performance under both conditions. Hence, this genotype can be a candidate for further multi-years and locations test as recommended for cultivation under rainfed conditions in arid and semi-arid regions.


1985 ◽  
Vol 21 (3) ◽  
pp. 209-222 ◽  
Author(s):  
J. D. H. Keatinge ◽  
P. J. H. Neate ◽  
K. D. Shepherd

SUMMARYThe development and influence of crop drought stress was examined in winter-planted small-grain cereals under Mediterranean environmental conditions. In two average or wetter than average years crop drought stress in the grain-filling period was greatly exacerbated by the addition of fertilizer (N and P) and this usually resulted in significantly lower kernel weights. Yet this reduction was not so substantial as to seriously affect crop yields. Total grain yields were largest in treatments receiving fertilizer, due to greater spike numbers and numbers of kernels per spike. But heavy nitrogen applications may promote the risk of a large proportion of small or shrivelled grains in a dry year.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e1708 ◽  
Author(s):  
Kenny Paul ◽  
János Pauk ◽  
Zsuzsanna Deák ◽  
László Sass ◽  
Imre Vass

We report a case study of natural variations and correlations of some photosynthetic parameters, green biomass and grain yield in Cappelle Desprez and Plainsman V winter wheat (Triticum aestivumL.) cultivars, which are classified as being drought sensitive and tolerant, respectively. We monitored biomass accumulation from secondary leaves in the vegetative phase and grain yield from flag leaves in the grain filling period. Interestingly, we observed higher biomass production, but lower grain yield stability in the sensitive Cappelle cultivar, as compared to the tolerant Plainsman cv. Higher biomass production in the sensitive variety was correlated with enhanced water-use efficiency. Increased cyclic electron flow around PSI was also observed in the Cappelle cv. under drought stress as shown by light intensity dependence of the ratio of maximal quantum yields of Photosystem I and Photosystem II, as well by the plot of the Photosystem I electron transport rate as a function of Photosystem II electron transport rate. Higher CO2uptake rate in flag leaves of the drought-stressed Plainsman cv. during grain filling period correlates well with its higher grain yield and prolonged transpiration rate through spikes. The increase in drought factor (DFI) and performance (PI) indices calculated from variable chlorophyll fluorescence parameters of secondary leaves also showed correlation with higher biomass in the Cappelle cultivar during the biomass accumulation period. However, during the grain filling period, DFI and PI parameters of the flag leaves were higher in the tolerant Plainsman V cultivar and showed correlation with grain yield stability. Our results suggest that overall biomass and grain yield may respond differentially to drought stress in different wheat cultivars and therefore phenotyping for green biomass cannot be used as a general approach to predict grain yield. We also conclude that photosynthetic efficiency of flag and secondary leaves is correlated with grain yield and green biomass, respectively. In addition, secondary trait associated mechanisms like delayed senescence and higher water-use efficiency also contribute to biomass stability. Our studies further prove that photosynthetic parameters could be used to characterize environmental stress responses.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1252
Author(s):  
Md. Amirul Islam ◽  
Rajib Kumar De ◽  
Md. Alamgir Hossain ◽  
Md. Sabibul Haque ◽  
Md. Nesar Uddin ◽  
...  

Drought stress is one of the limiting factors for grain filling and yield in wheat. The grain filling and determinants of individual grain weight depend on current assimilation and extent of remobilization of culm reserves to grains. A pot experiment was conducted with eight wheat cultivars at the Pot House to study the grain filling and the contributions of reserves in culm, including the sheath to grain yield under drought stress. Drought stress was enforced by restricting irrigation during the grain-filling period. The plants (tillers) were harvested at anthesis, milk-ripe, and maturity. The changes in dry weights of leaves, culm with sheath, spikes, and grains; and the contribution of culm reserves to grain yield were determined. Results revealed that drought stress considerably decreased the grain filling duration by 15–24% and grain yield by 11–34%. Further, drought-induced early leaf senescence and reduced total dry matter production indicate the minimum contribution of current assimilation to grain yield. The stress reduced the contribution of culm reserves, the water-soluble carbohydrates (WSCs), to the grains. The accumulation of culm WSCs reached peak at milk ripe stage in control, varied from 28.6 to 84 mg culm−1 and that significantly reduced in the range from 14.9 to 40.6 mg culm−1 in stressed plants. The residual culm WSCs in control and stressed plants varied from 1.23 to 8.12 and 1.00 to 3.40 mg g−1 culm dry mass, respectively. BARI Gom 24 exhibited a higher contribution of culm WSCs to grain yield under drought, while the lowest contribution was found in Kanchan. Considering culm reserves WSCs and their remobilization along with other studied traits, BARI Gom 24 showed greater drought tolerance and revealed potential to grow under water deficit conditions in comparison to other cultivars.


2018 ◽  
Vol 16 (1) ◽  
pp. 62-66
Author(s):  
Md Masudul Karim ◽  
Md Amirul Islam ◽  
Md Rasel Rana ◽  
Md Alamgir Hossain ◽  
Md Abdul Kader

Grain filling determines the grain weight, a major component of grain yield in cereals. Grain filling in barley depends on current assimilation and culm reserves. A pot experiment was conducted at the Grilled House, Department of Crop Botany, Bangladesh Agricultural University, Mymensingh during October 2015–May 2016 to study the grain filling patterns and the contributions of culm reserves to grain yield under drought stress. The experiment consisted of two factors—barley cultivars (six cultivars) and drought stress treatments (control and drought stress). Drought stress was imposed by limiting the irrigation during grain filling period. The tillers were sampled at anthesis, milk-ripe and maturity to determine the changes in dry weights of different parts, viz., leaf lamina, culm with sheath, spikes, and grains; and to examine the contribution of culm reserves to grain yield. The result in this experiment revealed that the grain yield was reduced by 5–25% due to drought stress. The reduction in grain yield was attributable to reduce number of grains per spike and lighter grain weight due to the stress. Drought stress drastically reduced the grain filling duration by about 30% and the stress induced early leaf senescence. Photosynthesis rate and leaf greenness were also reduced in stress. The stress altered the contribution of culm reserves, water soluble carbohydrates (WSCs) in culms to grains. At milk ripe stage, accumulation reached its peak. It accumulated 29.0 to 70.0 mg and from 15.8 to 40.6 mg culm−1 in control and stressed plants, respectively. The residual culm WSCs ranged from 3.5 to 11.2 mg and 1.0 to 3.5 mg culm−1 under control and stress conditions, respectively. The highest contribution of culm WSCs to grain yield was observed in BARI barley2 and the lowest was in BARI barley5 both in control and stress condition. Among the cultivars studied, BARI barley2 produced higher yield with the higher contribution of culm reserves to grain yield under the drought stress.J. Bangladesh Agril. Univ. 16(1): 62-66, April 2018


2015 ◽  
Vol 41 (4) ◽  
pp. 548 ◽  
Author(s):  
Dong-Ling ZHANG ◽  
Hong-Na ZHANG ◽  
Chen-Yang HAO ◽  
Lan-Fen WANG ◽  
Tian LI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document