scholarly journals Vapour Application of Sage Essential Oil Maintain Tomato Fruit Quality in Breaker and Red Ripening Stages

Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2645
Author(s):  
Antonios Chrysargyris ◽  
Charalampos Rousos ◽  
Panayiota Xylia ◽  
Nikolaos Tzortzakis

Consumers seek safe, high-nutritional-value products, and therefore maintaining fresh produce quality is a fundamental goal in the food industry. In an effort to eliminate chemical-based sanitizing agents, there has been a shift in recent decades toward the usage of eco-friendly, natural solutions (e.g., essential oils-EOs). In the present study, tomato fruits (Solanum lycopersicum L. cv. Dafni) at breaker and red ripening stage were exposed to sage essential oils (EO: 50 μL L−1 or 500 μL L−1) for 2, 7 and 14 days, at 11 °C and 90% relative humidity (RH). Quality-related attributes were examined during (sustain effect—SE) and following (vapour-induced memory effect—ME; seven days vapours + seven days storage) vapour treatment. In breaker tomatoes, EO-enrichment (sustained effect) retained fruit firmness, respiration rates, and ethylene emission in low EO levels (50 μL L−1). In contrast, breaker fruit metabolism sped up in high EO levels of 500 μL L−1, with decreased firmness, increased rates of respiration and ethylene, and effects on antioxidant metabolism. The effects were more pronounced during the storage period of 14 days, comparing to the fruit exposed to common storage-transit practice. In red fruits, the EOs impacts were evidenced earlier (at two and seven days of storage) with increased rates of respiration and ethylene, increased β-carotene, and decreased lycopene content. In both breaker and red ripening fruit, EO application decreased weight losses. Considering the fruits pre-exposed to EOs, quality attributes were more affected in green fruits and affected to a lesser level in the red ones. Furthermore, based on appearance, color, and texture evaluations, organoleptic trials demonstrated an overwhelming preference for EO-treated red fruit during choice tests. EOs had lower effects on total phenolics, acidity, total soluble solids, and fruit chroma, with no specific trend for both breaker and red tomatoes. Natural volatiles may aid to retain fruit quality in parallel with their antimicrobial protection offered during storage and transportation of fresh produce. These effects may persist after the EO is removed from the storage conditions.

2020 ◽  
Vol 69 (2) ◽  
pp. 130-135
Author(s):  
Matias Siueia Júnior ◽  
Maria Ligia de Souza Silva ◽  
Anderson Ricardo Trevizam ◽  
Valdemar Faquin ◽  
Deivisson Ferreira da Silva

Nitrogen (N) and sulfur (S) are nutrients that, in addition to influencing plant growth and production, interfere with processes related to postharvest fruit quality. In the present study, N x S interaction was evaluated in the postharvest quality of tomato (Solanum lycopersicum L.). The experiment was conducted in a greenhouse using 5 dm3 capacity vessels containing a 0-20 cm layer of a dystropherric Red Latosol. A 5 x 3 factorial design was used, with combinations of five doses of N (0, 100, 200, 300 and 400 mg dm-3) and three doses of S (0, 60 and 120 mg dm-3) distributed in a completely randomized design, with four repetitions. After harvest, the attributes of fruit quality were evaluated: firmness, pH, soluble solids (SS), titratable acidity (AT), soluble solids ratio and titratable acidity (SS / AT), vitamin C, lycopene and beta-carotene. An increase in firmness was observed, as well as the content of soluble solids, titratable acidity and the SS / AT ratio of the fruits as a result of the interaction N x S. However, this interaction favoured the reduction of the contents of vitamin C, lycopene and beta-carotene, and the quality characteristics of tomato fruit in relation to the recommended values. Only the increasing doses of N favoured a higher pH in the tomato fruits.


2017 ◽  
Vol 4 (1) ◽  
pp. 36-47
Author(s):  
R. Osae G. Essilfie J. O. Anim

The study was conducted to assess the effect of different waxing materials on the quality attributes of tomato fruits. A 2 x8 factorial experiment layout in complete randomized design with 16 treatment combinations and 3 replication was adopted.The materials that were used for the experiment are two (2) varieties of tomatoes (Pectomech and Power Rano) and seven(7) waxing material (shea butter, cassava starch, beeswax, and a combination of shea butter + cassava starch, shea butter + beeswax, cassava starch + beeswax, shea butter + cassava starch + beeswax) and a control. Results from the experiment indicated that all waxing treatments delayed the development of weight loss, firmness, pH, total soluble solids, and total titrable acidity. The results also suggested that edible wax coatings delayed the ripening process and colour development of tomato fruits during the storage period and extended the shelf life. However Beewax treatment and its combinations performed better than the other treatments. It was therefore recommended that locally produced wax such as Beewax, Shea butter, Cassava Starch treatments and their combinations could be a good technology for preserving the quality and extending the shelf life of fresh tomato fruit as well as maintaining the physical and chemical properties.


Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 820
Author(s):  
José M. Lorente-Mento ◽  
Fabián Guillén ◽  
Salvador Castillo ◽  
Domingo Martínez-Romero ◽  
Juan M. Valverde ◽  
...  

The effect of melatonin pomegranate tree treatments on fruit quality and bioactive compounds with antioxidant activity at harvest and during storage at 10 °C for 60 days was assayed in two consecutive years, 2019 and 2020. In the first year, trees were treated with 0.1, 0.3 and 0.5 mM of melatonin along the developmental fruit growth cycle, and results showed that bioactive compounds (total phenolics and total and individual anthocyanins) and antioxidant activity at harvest were higher in fruits from melatonin-treated trees than in controls. Other fruit quality parameters, such as firmness, total soluble solids and aril red colour, were also increased as a consequence of melatonin treatment. In fruit from control tress, firmness and acidity levels decreased during storage, while increases occurred on total soluble solids, leading to fruit quality reductions. These changes were delayed, and even maintenance of total acidity was observed, in fruit from melatonin-treated trees with respect to controls, resulting in a fruit shelf-life increase. Moreover, concentration of phenolics and anthocyanins and antioxidant activity were maintained at higher levels in treated than in control fruits during the whole storage period. In general, all the mentioned effects were found at the highest level with the 0.1 mM melatonin dose, and then it was selected for repeating the experiment in the second year and results of the first year were confirmed. Thus, 0.1 mM melatonin treatment could be a useful tool to enhance aril content on bioactive compounds with antioxidant activity and health beneficial effects and to improve quality traits of pomegranate fruit, at harvest and during postharvest storage.


2020 ◽  
Vol 23 ◽  
Author(s):  
Neide Botrel ◽  
Raphael Augusto de Castro e Melo

Abstract Pepino dulce (Solanum muricatum Aiton) or Pepino has been growing to produce edible, juicy and attractive fruits. The imported fruits and national small scale of Pepino dulce production are currently stored and commercialized under the absence of postharvest handling recommendations. Therefore, this work aimed to evaluate the quality aspects of Pepino dulce fruits in distinct ripening stages, forms of packaging and conditions of storage. The trial was conducted in a 2x2x2 factorial scheme - 2 ripening stages (ripe and immature) x 2 forms of packaging (with and without wrapping in plastic film) x 2 conditions of storage (room: 25 °C ± 2 ºC and 57% ± 5% of relative humidity (RH); cold: under refrigeration 10 °C ± 2 °C and 85% ± 5% of RH) – in a complete randomized block design. Fruit quality attributes, such as vitamin C, chemical and phenolic content, fruit color (mesocarp), firmness, dry matter content, total titratable acidity (TA), total soluble solids and pH, were evaluated. Fruits showed a centesimal composition with low calories and a significant content of potassium (K), phosphorus (P) and magnesium (Mg), which can contribute to the daily supply of these elements. For commercialization purposes, the association of packaging (plastic wrapping film) and refrigerated storage (cold: 10 °C ± 2 °C and 85% ± 5% of RH) to maintain the characteristics of fruit quality after a 15 days period is more important than its individual use.


2002 ◽  
Vol 20 (4) ◽  
pp. 659-663 ◽  
Author(s):  
Celso Luiz Moretti ◽  
Alessandra L. Araújo ◽  
Waldir Aparecido Marouelli ◽  
Washington Luiz C. Silva

Tomato (Lycopersicon esculentum Mill.) fruits, cv. Santa Clara, were harvested at the breaker stage from commercial fields in Brazlândia, Brazil, to investigate the ability of 1-methylcyclopropene (1-MCP) to retard tomato fruit ripening. Fruit without external blemishes were graded for size (diameter = 80±5 mm) and mass (m = 130±10 g), placed inside hermetically sealed boxes, and 1-MCP was applied for 12 hours (T = 22±1°C; RH = 80-85%) at four different concentrations: 0 (control), 250, 500 and 1000 mL.L-1. Fruits were held at ambient conditions (T = 23±2°C; RH 80-85%) for 2 days and then stored inside a cold room (T = 20±1°C; RH = 85-95%). Every 3 days, during a 15-day period, fruits were analyzed for firmness, total soluble solids, titratable acidity, external color, and total carotenoids. Firmness of fruit treated with 1000 mL.L-1 was about 88% higher than control fruits after 17 days. The a*/b* ratio, an indicator of skin color, for fruit treated with 1000 mL.L-1 of 1-MCP was 38% lower than control fruits at the end of the storage period. Treatments with higher concentrations of 1-MCP delayed total carotenoids synthesis and color development. Control fruits stored for 17 days had about 190% more total carotenoids than fruits treated with 1000 mL.L-1 of 1-MCP. Postharvest application of 1-MCP was an efficient method to delay tomato fruit ripening. As 1-MCP concentration increased, ripening was further delayed. Tomatoes treated with 250, 500, and 1000 mL.L-1 of 1-MCP were delayed by 8 to 11, 11 to 13 and 15 to 17 days, respectively.


Agriculture ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 153 ◽  
Author(s):  
Ratna Suthar ◽  
Cun Wang ◽  
M. Nunes ◽  
Jianjun Chen ◽  
Steven Sargent ◽  
...  

As a soil amendment, biochar can significantly improve soil quality and crop growth. Few studies, however, have explored biochar effects on crop quality. This study investigated the amendment effects of bamboo biochar pyrolyzed at different temperatures on plant growth and fruit quality of tomato (Solanum lycopersicum L.). Tomato ‘Micro-Tom’ plants were grown in a sand medium amended with 0, 1, and 3% of biochars produced at 300 °C, 450 °C, and 600 °C, respectively. Plant growth was monitored, and fruit harvested at the red stage was analyzed for color, texture, soluble solids content, sugars, ascorbic acid, and acidity. Results showed that biochars produced at 300 °C and amended at 3% or pyrolyzed at 450 °C and amended at 1% increased plant growth index. Contents of glucose, fructose, soluble solids, ascorbic acid, and sugar-to-acid ratios of fruits produced from the two treatments were significantly higher than the other treatments. The improved plant growth and fruit quality were related to the higher concentrations of NO3, P, Ca, and Mg in the growing media. Our results suggest that optimizing biochar use can be achieved by targeting biochar production conditions and application rate, which resulted in desirable amendment and fruit quality effects.


Foods ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 590 ◽  
Author(s):  
Antonio López-Gómez ◽  
María Ros-Chumillas ◽  
Laura Buendía-Moreno ◽  
Laura Navarro-Segura ◽  
Ginés Benito Martínez-Hernández

Mandarins are usually sold in bulk and refrigerated in open cardboard boxes with a relatively short shelf-life (12–15 days) due to physiological and pathological disorders (rot, dehydration, internal breakdown, etc.). The influence of a controlled release of essential oils (EOs) from an active packaging (including β-cyclodextrin-EOs inclusion complex) was studied on the mandarin quality stability, comparing different sized cardboard trays and boxes, either non-active or active, at the pilot plant scale (experiment 1; commercialization simulation at room temperature after a previous simulation of short transportation/storage of 5 days at 8 °C). Then, the selected package was further validated at the industrial scale (experiment 2; cold storage at 8 °C up to 21 days). Among package types, the active large box (≈10 kg fruit per box) better maintained the mandarin quality, extending the shelf life from two weeks (non-active large box) to three weeks at room temperature. Particularly, the active large box highly controlled microbial growth (up to two log units), reduced weight losses (by 1.6-fold), reduced acidity, and increased soluble solids (highly appreciated in sensory analyses), while it minimized colour and controlled firmness changes after three weeks. Such trends were also observed during the validation experiment, extending the shelf life (based on sensory quality) from 14 to at least 21 days. In conclusion, the mandarin’s shelf life with this active cardboard box format was extended more than one week at 8 °C.


Author(s):  
Suchismita Jena ◽  
Ramesh K. Goyal ◽  
Anil K. Godhara ◽  
Abhilash Mishra

Aims:  To evaluate the potentiality of bio-extract coatings for achieving extended shelf life with enhance fruit quality attributes in pomegranate under ambient storage condition.  Study Design:  The lab experiment conducted in complete randomized design with three repetitions on Mridula cultivar of pomegranate.     Place and Duration of Study:  The experiment was conducted during September 2016 at department of fruit science, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, India. Methodology: Pomegranate freshly harvested fruits were coated with three bio-extracts coatings viz. Aloe vera (50,75 and 100%), ginger (1,2 and 3%) and mints (10,20 and 30%). The coated fruits were stored at ambient room condition in corrugated fiber board boxes for twelve days.  Periodically effects of bio-extract coatings, storage period and their interaction were observed for physiological loss in weight, decay loss, juice content, TSS: acid ratio, ascorbic acid content and anthocyanin content.    Results: Surface coating with Aloe vera extract 100% was found most effective in reducing physiological loss in weight (50% less reduction as compared to untreated control) whereas ginger extract 3% in reducing the decay loss of fruits (9.65%) as compared to untreated control (23.36%). Among various treatments, the coating of pomegranate fruits with Aloe vera extract 100% resulted in lowest total soluble solids to acid ratio (32.17%) and significantly highest content of juice (47.17%), anthocyanin (13.98 mg/100 g) and ascorbic acid (12.82 mg/100 g) of the fruits along with highest organoleptic rating. The quality attributes viz. total soluble solids to acid ratio, anthocyanin of fruits increased with progression of storage period, while juice content and ascorbic acid decreased. Conclusion: Bio-extract coating of Aloe vera (100%) substantially improved the shelf life with retaining better fruit quality attributes under ambient conditions and has the potential to substitute the prevalent chemical coatings for pomegranate.  


HortScience ◽  
2012 ◽  
Vol 47 (6) ◽  
pp. 721-726 ◽  
Author(s):  
Dilip R. Panthee ◽  
Chunxue Cao ◽  
Spencer J. Debenport ◽  
Gustavo R. Rodríguez ◽  
Joanne A. Labate ◽  
...  

There is a growing interest by consumers to purchase fresh tomatoes with improved quality traits including lycopene, total soluble solids (TSS), vitamin C, and total titratable acid (TTA) content. As a result, there are considerable efforts by tomato breeders to improve tomato for these traits. However, suitable varieties developed for one location may not perform the same in different locations. This causes a problem for plant breeders because it is too labor-intensive to develop varieties for each specific location. The objective of this study was to determine the extent of genotype × environment (G×E) interaction that influences tomato fruit quality. To achieve this objective, we grew a set of 42 diverse tomato genotypes with different fruit shapes in replicated trials in three locations: North Carolina, New York, and Ohio. Fruits were harvested at the red ripe stage and analyzed for lycopene, TSS, vitamin C, and TTA. Analysis of variance (ANOVA) revealed that there were significant differences (P < 0.05) among tomato genotypes, locations, and their interaction. Further analysis of quality traits from individual locations revealed that there was as much as 211% change in performance of some genotypes in a certain location compared with the average performance of a genotype. Lycopene was found to be most influenced by the environment, whereas TTA was the least influenced. This was in agreement with heritability estimates observed in the study for these quality traits, because heritability estimate for lycopene was 16%, whereas that for TTA was 87%. The extent of G×E interaction found for the fruit quality traits in the tomato varieties included in this study may be useful in identifying optimal locations for future field trials by tomato breeders aiming to improve tomato fruit quality.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1149b-1149
Author(s):  
Sieglinde Snapp ◽  
Carol Shennan

Tomato Fruit quality can be improved by the use of moderately saline irrigation water. However, decreased fruit yields may occur if the saline treatment is initiated early in plant development or the salt concentration is high. Another concern with the use of saline irrigation water is increased plant susceptibility to disease. Two processing tomato cultivars were grown under low salt (ECa=1.1 ds/m), medium salt (ECa=2.8 ds/m) and high salt (ECa=4.6 ds/m) regimes, and in the presence and absence of Phytophthora parasitica, the casual agent of Phytophthora root rot. Salinity increased Phytophthora root rot severity in UC82B, the susceptible cultivar, but had a limited effect on CX8303, a cultivar known to have a measure of resistance to Phytophthora root rot. Fruit acidity and percent total soluble solids were enhanced in both cultivars by increasing salinity. Infection by P. parasitica increased acidity and soluble solids in UC82B fruit grown under high salt. Sodium and chloride concentrations in tomato fruit increased in a manner proportionate to the salt treatment applied; however, in the absence of disease, fruit Na+ and Cllevels were markedly lower compared to other tissues in the plant, The presence of salt-enhanced Phytophthora root rot in UC82B increased fruit Na+ concentration by almost 100%. Fruit Ca2+ and K+ levels, in contrast, declined moderately with increasing salinity and were not affected by disease.


Sign in / Sign up

Export Citation Format

Share Document