scholarly journals The Role of Outer Membrane Protein(s) Harboring SLH/OprB-Domains in Extracellular Vesicles’ Production in Synechocystis sp. PCC 6803

Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2757
Author(s):  
Delfim Cardoso ◽  
Steeve Lima ◽  
Jorge Matinha-Cardoso ◽  
Paula Tamagnini ◽  
Paulo Oliveira

Cyanobacteria are a group of photosynthetic prokaryotes that contribute to primary production on a global scale. These microorganisms release vesicles to the extracellular environment, spherical nanosized structures, derived essentially from the outer membrane. Even though earlier works in model Gram-negative bacteria have hypothesized that outer membrane stability is crucial in vesicle formation, the mechanisms determining vesicle biogenesis in cyanobacteria remain unknown. Here, we report on the identification of six candidate genes encoding outer membrane proteins harboring SLH/OprB-domains in the genome of the model cyanobacterium Synechocystis sp. PCC 6803. Using a genetics-based approach, one gene was found to encode an essential protein (Slr1841), while the remaining five are not essential for growth under standard conditions. Vesicle production was monitored, and it was found that a mutant in the gene encoding the second most abundant SLH/OprB protein in Synechocystis sp. PCC 6803 outer membrane (Slr1908) produces more vesicles than any of the other tested strains. Moreover, the Slr1908-protein was also found to be important for iron uptake. Altogether, our results suggest that proteins containing the SLH/OprB-domains may have dual biological role, related to micronutrient uptake and to outer membrane stability, which, together or alone, seem to be involved in cyanobacterial vesicle biogenesis.

1998 ◽  
Vol 141 (6) ◽  
pp. 1371-1381 ◽  
Author(s):  
Istvan Boldogh ◽  
Nikola Vojtov ◽  
Sharon Karmon ◽  
Liza A. Pon

Transfer of mitochondria to daughter cells during yeast cell division is essential for viable progeny. The actin cytoskeleton is required for this process, potentially as a track to direct mitochondrial movement into the bud. Sedimentation assays reveal two different components required for mitochondria–actin interactions: (1) mitochondrial actin binding protein(s) (mABP), a peripheral mitochondrial outer membrane protein(s) with ATP-sensitive actin binding activity, and (2) a salt-inextractable, presumably integral, membrane protein(s) required for docking of mABP on the organelle. mABP activity is abolished by treatment of mitochondria with high salt. Addition of either the salt-extracted mitochondrial peripheral membrane proteins (SE), or a protein fraction with ATP-sensitive actin-binding activity isolated from SE, to salt-washed mitochondria restores this activity. mABP docking activity is saturable, resistant to high salt, and inhibited by pre-treatment of salt-washed mitochondria with papain. Two integral mitochondrial outer membrane proteins, Mmm1p (Burgess, S.M., M. Delannoy, and R.E. Jensen. 1994. J.Cell Biol. 126:1375–1391) and Mdm10p, (Sogo, L.F., and M.P. Yaffe. 1994. J.Cell Biol. 126:1361– 1373) are required for these actin–mitochondria interactions. Mitochondria isolated from an mmm1-1 temperature-sensitive mutant or from an mdm10 deletion mutant show no mABP activity and no mABP docking activity. Consistent with this, mitochondrial motility in vivo in mmm1-1 and mdm10Δ mutants appears to be actin independent. Depolymerization of F-actin using latrunculin-A results in loss of long-distance, linear movement and a fivefold decrease in the velocity of mitochondrial movement. Mitochondrial motility in mmm1-1 and mdm10Δ mutants is indistinguishable from that in latrunculin-A–treated wild-type cells. We propose that Mmm1p and Mdm10p are required for docking of mABP on the surface of yeast mitochondria and coupling the organelle to the actin cytoskeleton.


2014 ◽  
Vol 61 (5) ◽  
pp. 672-678 ◽  
Author(s):  
N. O. Yur’eva ◽  
S. N. Kirsanova ◽  
L. N. Kukushkina ◽  
V. P. Pchelkin ◽  
G. I. Sobol’kova ◽  
...  

2014 ◽  
Vol 106 (2) ◽  
pp. 557a
Author(s):  
Rachna Agarwal ◽  
Stanislav D. Zakharov ◽  
S. Saif Hasan ◽  
Julian P. Whitelegge ◽  
William A. Cramer

2005 ◽  
Vol 187 (18) ◽  
pp. 6499-6508 ◽  
Author(s):  
Karsten R. O. Hazlett ◽  
David L. Cox ◽  
Marc Decaffmeyer ◽  
Michael P. Bennett ◽  
Daniel C. Desrosiers ◽  
...  

ABSTRACT The outer membrane of Treponema pallidum, the noncultivable agent of venereal syphilis, contains a paucity of protein(s) which has yet to be definitively identified. In contrast, the outer membranes of gram-negative bacteria contain abundant immunogenic membrane-spanning β-barrel proteins mainly involved in nutrient transport. The absence of orthologs of gram-negative porins and outer membrane nutrient-specific transporters in the T. pallidum genome predicts that nutrient transport across the outer membrane must differ fundamentally in T. pallidum and gram-negative bacteria. Here we describe a T. pallidum outer membrane protein (TP0453) that, in contrast to all integral outer membrane proteins of known structure, lacks extensive β-sheet structure and does not traverse the outer membrane to become surface exposed. TP0453 is a lipoprotein with an amphiphilic polypeptide containing multiple membrane-inserting, amphipathic α-helices. Insertion of the recombinant, nonlipidated protein into artificial membranes results in bilayer destabilization and enhanced permeability. Our findings lead us to hypothesize that TP0453 is a novel type of bacterial outer membrane protein which may render the T. pallidum outer membrane permeable to nutrients while remaining inaccessible to antibody.


2003 ◽  
Vol 71 (5) ◽  
pp. 2414-2421 ◽  
Author(s):  
Paul A. Cullen ◽  
David A. Haake ◽  
Dieter M. Bulach ◽  
Richard L. Zuerner ◽  
Ben Adler

ABSTRACT Leptospira is the etiologic agent of leptospirosis, a bacterial zoonosis distributed worldwide. Leptospiral lipopolysaccharide is a protective immunogen, but the extensive serological diversity of leptospires has inspired a search for conserved outer membrane proteins (OMPs) that may stimulate heterologous immunity. Previously, a global analysis of leptospiral OMPs (P. A. Cullen, S. J. Cordwell, D. M. Bulach, D. A. Haake, and B. Adler, Infect. Immun. 70:2311-2318, 2002) identified pL21, a novel 21-kDa protein that is the second most abundant constituent of the Leptospira interrogans serovar Lai outer membrane proteome. In this study, we identified the gene encoding pL21 and found it to encode a putative lipoprotein; accordingly, the protein was renamed LipL21. Southern hybridization analysis revealed the presence of lipL21 in all of the pathogenic species but in none of the saprophytic species examined. Alignment of the LipL21 sequence from six strains of Leptospira revealed 96 to 100% identity. When specific polyclonal antisera to recombinant LipL21 were used, LipL21 was isolated together with other known leptospiral OMPs by both Triton X-114 extraction and sucrose density gradient membrane fractionation. All nine strains of pathogenic leptospires investigated by Western blotting, whether culture attenuated or virulent, were found to express LipL21. In contrast, the expression of LipL21 or an antigenically related protein could not be detected in nonpathogenic L. biflexa. Infected hamster sera and two of eight human leptospirosis sera tested were found to react with recombinant LipL21. Native LipL21 was found to incorporate tritiated palmitic acid, consistent with the prediction of a lipoprotein signal peptidase cleavage site. Biotinylation of the leptospiral surface resulted in selective labeling of LipL21 and the previously known OMPs LipL32 and LipL41. These findings show that LipL21 is a surface-exposed, abundant outer membrane lipoprotein that is expressed during infection and conserved among pathogenic Leptospira species.


1989 ◽  
Vol 44 (1-2) ◽  
pp. 165-169 ◽  
Author(s):  
Uwe J. Jürgens ◽  
Roland Benz

Abstract Cell walls of the unicellular cyanobacterium Synechocystis sp. PCC 6714, isolated from cell homogenates, were found to be unusually resistant against extraction with various detergents, organic solvents, chaotropic agents, and proteases. The major outer membrane proteins (M r 67,000; 61,000; 94,000) were solubilized by differential SDS-extraction and purified by preparative SDS-PAGE. The extracted proteins, reconstituted into lipid bilayer membranes, formed two types of pores with single-channel conductances of 2.2 nS (pore diameter of 1.4 nm) and 0.3 nS (pore diameter not determined), respectively. Carotenoids and lipopolysaccharide were found to be associated with the extracted major proteins.


Sign in / Sign up

Export Citation Format

Share Document