scholarly journals Genome-Wide Identification and Expression Profiling of Potassium Transport-Related Genes in Vigna radiata under Abiotic Stresses

Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 2
Author(s):  
Farrukh Azeem ◽  
Usman Ijaz ◽  
Muhammad Amjad Ali ◽  
Sabir Hussain ◽  
Muhammad Zubair ◽  
...  

Potassium (K+) is one of the most important cations that plays a significant role in plants and constitutes up to 10% of plants’ dry weight. Plants exhibit complex systems of transporters and channels for the distribution of K+ from soil to numerous parts of plants. In this study, we have identified 39 genes encoding putative K+ transport-related genes in Vigna radiata. Chromosomal mapping of these genes indicated an uneven distribution across eight out of 11 chromosomes. Comparative phylogenetic analysis of different plant species, i.e., V. radiata, Glycine max, Cicer arietinum, Oryza sativa, and Arabidopsis thaliana, showed their strong conservation in different plant species. Evolutionary analysis of these genes suggests that gene duplication is a major route of expansion for this family in V. radiata. Comprehensive promoter analysis identified several abiotic stresses related to cis-elements in the promoter regions of these genes, suggesting their role in abiotic stress tolerance. Our additional analyses indicated that abiotic stresses adversely affected the chlorophyll concentration, carotenoids, catalase, total soluble protein concentration, and the activities of superoxide and peroxidase in V. radiata. It also disturbs the ionic balance by decreasing the uptake of K+ content and increasing the uptake of Na+. Expression analysis from high-throughput sequencing data and quantitative real-time PCR experiments revealed that several K+ transport genes were expressed in different tissues (seed, flower, and pod) and in abiotic stress-responsive manners. A highly significant variation of expression was observed for VrHKT (1.1 and 1.2), VrKAT (1 and 2) VrAKT1.1, VrAKT2, VrSKOR, VrKEA5, VrTPK3, and VrKUP/HAK/KT (4, 5, and 8.1) in response to drought, heat or salinity stress. It reflected their potential roles in plant growth, development, or stress adaptations. The present study gives an in-depth understanding of K+ transport system genes in V. radiata and will serve as a basis for a functional analysis of these genes.

Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2238
Author(s):  
Muhammad Hussnain Siddique ◽  
Naeem Iqbal Babar ◽  
Roshan Zameer ◽  
Saima Muzammil ◽  
Nazia Nahid ◽  
...  

Potassium is the most important and abundant inorganic cation in plants and it can comprise up to 10% of a plant’s dry weight. Plants possess complex systems of transporters and channels for the transport of K+ from soil to numerous parts of plants. Cajanus cajan is cultivated in different regions of the world as an economical source of carbohydrates, fiber, proteins, and fodder for animals. In the current study, 39 K+ transport genes were identified in C. cajan, including 25 K+ transporters (17 carrier-like K+ transporters (KUP/HAK/KTs), 2 high-affinity potassium transporters (HKTs), and 6 K+ efflux transporters (KEAs) and 14 K+ channels (9 shakers and 5 tandem-pore K+ channels (TPKs). Chromosomal mapping indicated that these genes were randomly distributed among 10 chromosomes. A comparative phylogenetic analysis including protein sequences from Glycine max, Arabidopsis thaliana, Oryza sativa, Medicago truncatula Cicer arietinum, and C. cajan suggested vital conservation of K+ transport genes. Gene structure analysis showed that the intron/exon organization of K+ transporter and channel genes is highly conserved in a family-specific manner. In the promoter region, many cis-regulatory elements were identified related to abiotic stress, suggesting their role in abiotic stress response. Abiotic stresses (salt, heat, and drought) adversely affect chlorophyll, carotenoids contents, and total soluble proteins. Furthermore, the activities of catalase, superoxide, and peroxidase were altered in C. cajan leaves under applied stresses. Expression analysis (RNA-seq data and quantitative real-time PCR) revealed that several K+ transport genes were expressed in abiotic stress-responsive manners. The present study provides an in-depth understanding of K+ transport system genes in C. cajan and serves as a basis for further characterization of these genes.


2014 ◽  
Vol 955-959 ◽  
pp. 3709-3712
Author(s):  
Mao Bo Zheng ◽  
Hai Bin Zhao ◽  
Yan Ming Zhang

Rapid progress of crop genomics is making possible to undertake detailed structural and functional comparisons of genes involved in various biological processes among important crops and other plant species. These genomics-based approaches aim to decipher the entire genome, including genic and intergenic regions, to gain insights into plant molecular responses which will in turn provide specific strategies for crop improvement,especially in abiotic stresses. The objectives of this article are to review genomics approaches in crop resources and summarize to improve abiotic stresses by genomics. At last, we look forward and consider the significant of genomics approaches for abiotic stress in crop resources.


2019 ◽  
Author(s):  
Mingjia Tang ◽  
Liang Xu ◽  
Yan Wang ◽  
Wanwan Cheng ◽  
Xiaobo Luo ◽  
...  

Abstract Background Abiotic stresses due to climate change pose a great threat to crop production. Heat shock transcription factors (HSFs) are vital regulators that play key roles in protecting plants against various abiotic stresses. Therefore, the identification and characterization of HSFs is imperative to dissect the mechanism responsible for plant stress responses. Although the HSF gene family has been extensively studied in several plant species, its characterization, evolutionary history and expression patterns in the radish (Raphanus sativus L.) remain limited. Results In this study, 33 RsHSF genes were obtained from the radish genome, which were classified into three main groups and 12 subgroups based on HSF protein domain structure. Chromosomal localization analysis revealed that 28 of 33 RsHSF genes were located on nine chromosomes, and 10 duplicated RsHSF genes were grouped into eight gene pairs by whole genome duplication (WGD). Moreover, there were 23 or 9 pairs of orthologous HSFs were identified between radish and Arabidopsis or rice, respectively. Comparative analysis revealed a close relationship among radish, Chinese cabbage and Arabidopsis. RNA-seq data showed that eight RsHSF genes, including RsHSF-03, were highly expressed in the leaf, root, cortex, cambium and xylem, results that these genes might be involved in plant growth and development. Further, quantitative real-time polymerase chain reaction (RT-qPCR) indicated that the expression patterns of 12 RsHSF genes varied upon exposure to different abiotic stresses, including heat, salt, and heavy metals. This data indicated that the RsHSFs may be involved in abiotic stress response. Conclusions These results could provide fundamental insights into the characteristics and evolution of the HSF family and facilitate further dissection of the molecular mechanism responsible for radish abiotic stress responses.


2020 ◽  
Author(s):  
Peisen Su ◽  
Jun Yan ◽  
Wen Li ◽  
Liang Wang ◽  
Jinxiao Zhao ◽  
...  

Abstract Background: Salt and drought are the main abiotic stresses that restrict the yield of crops. Peroxidases (PRXs) are involved in various abiotic stress responses. Furthermore, only few wheat PRXs have been characterized in the mechanism of the abiotic stress response.Results: In this study, a novel wheat peroxidase (PRX) gene named TaPRX-2A, a member of wheat class III PRX gene family, was cloned and its response to salt stress was characterized. Based on the identification and evolutionary analysis of class III PRXs in 12 plants, we proposed an evolutionary model for TaPRX-2A, suggesting that occurrence of some exon fusion events during evolution. We also detected the positive selection of PRX domain in 13 PRXs involving our evolutionary model, and found 2 or 6 positively selected sites during TaPRX-2A evolution. Quantitative reverse transcription–polymerase chain reaction (qRT–PCR) results showed that TaPRX-2A exhibited relatively higher expression levels in root tissue than those exhibited in leaf and stem tissues. TaPRX-2A expression was also induced by abiotic stresses and hormone treatments such as polyethylene glycol 6000, NaCl, hydrogen peroxide (H2O2), salicylic acid (SA), methyljasmonic acid (MeJA) and abscisic acid (ABA). Transgenic wheat plants with overexpression of TaPRX-2A showed higher tolerance to salt stress than wild-type (WT) plants. Confocal microscopy revealed that TaPRX-2A-eGFP was mainly localized in cell nuclei. Survival rate, relative water content, and shoot length were higher in TaPRX-2A-overexpressing wheat than in the WT wheat, whereas root length was not significantly different. The activities of s superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were enhanced in TaPRX-2A-overexpressing wheat compared with those in the WT wheat, resulting in the reduction of reactive oxygen species (ROS) accumulation and malondialdehyde (MDA) content. The expression levels of downstream stress-related genes showed that RD22, TLP4, ABAI, GST22, FeSOD, and CAT exhibited higher expressions in TaPRX-2A-overexpressing wheat than in WT under salt stress.Conclusions: The results show that TaPRX-2A plays a positive role in the response to salt stress by scavenging ROS and regulating stress-related genes.


2020 ◽  
Author(s):  
Peisen Su ◽  
Jun Yan ◽  
Wen Li ◽  
Liang Wang ◽  
Jinxiao Zhao ◽  
...  

Abstract Background: Salt and drought are the main abiotic stresses that restrict the yield of crops. Peroxidases (PRXs) are involved in various abiotic stress responses. Furthermore, only few wheat PRXs have been characterized in the mechanism of the abiotic stress response.Results: In this study, a novel wheat peroxidase (PRX) gene named TaPRX-2A, a member of wheat class III PRX gene family, was cloned and its response to salt stress was characterized. Based on the identification and evolutionary analysis of class III PRXs in 12 plants, we proposed an evolutionary model for TaPRX-2A, suggesting that occurrence of some exon fusion events during evolution. We also detected the positive selection of PRX domain in 13 PRXs involving our evolutionary model, and found 2 or 6 positively selected sites during TaPRX-2A evolution. Quantitative reverse transcription–polymerase chain reaction (qRT–PCR) results showed that TaPRX-2A exhibited relatively higher expression levels in root tissue than those exhibited in leaf and stem tissues. TaPRX-2A expression was also induced by abiotic stresses and hormone treatments such as polyethylene glycol 6000, NaCl, hydrogen peroxide (H2O2), salicylic acid (SA), methyljasmonic acid (MeJA) and abscisic acid (ABA). Transgenic wheat plants with overexpression of TaPRX-2A showed higher tolerance to salt stress than wild-type (WT) plants. Confocal microscopy revealed that TaPRX-2A-eGFP was mainly localized in cell nuclei. Survival rate, relative water content, and shoot length were higher in TaPRX-2A-overexpressing wheat than in the WT wheat, whereas root length was not significantly different. The activities of s superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were enhanced in TaPRX-2A-overexpressing wheat compared with those in the WT wheat, resulting in the reduction of reactive oxygen species (ROS) accumulation and malondialdehyde (MDA) content. The expression levels of downstream stress-related genes showed that RD22, TLP4, ABAI, GST22, FeSOD, and CAT exhibited higher expressions in TaPRX-2A-overexpressing wheat than in WT under salt stress.Conclusions: The results show that TaPRX-2A plays a positive role in the response to salt stress by scavenging ROS and regulating stress-related genes.


2021 ◽  
Vol 48 (1) ◽  
pp. 54
Author(s):  
Imen Balti ◽  
Jubina Benny ◽  
Anna Perrone ◽  
Tiziano Caruso ◽  
Donia Abdallah ◽  
...  

As a consequence of global climate change, certain stress factors that have a negative impact on crop productivity such as heat, cold, drought and salinity are becoming increasingly prevalent. We conducted a meta-analysis to identify genes conserved across plant species involved in (1) general abiotic stress conditions, and (2) specific and unique abiotic stress factors (drought, salinity, extreme temperature) in leaf tissues. We collected raw data and re-analysed eight RNA-Seq studies using our previously published bioinformatic pipeline. A total of 68 samples were analysed. Gene set enrichment analysis was performed using MapMan and PageMan whereas DAVID (Database for Annotation, Visualisation and Integrated Discovery) was used for metabolic process enrichment analysis. We identified of a total of 5122 differentially expressed genes when considering all abiotic stresses (3895 were upregulated and 1227 were downregulated). Jasmonate-related genes were more commonly upregulated by drought, whereas gibberellin downregulation was a key signal for drought and heat. In contrast, cold stress clearly upregulated genes involved in ABA (abscisic acid), cytokinin and gibberellins. A gene (non-phototrophic hypocotyl) involved in IAA (indoleacetic acid) response was induced by heat. Regarding secondary metabolism, as expected, MVA pathway (mevalonate pathway), terpenoids and alkaloids were generally upregulated by all different stresses. However, flavonoids, lignin and lignans were more repressed by heat (cinnamoyl coA reductase 1 and isopentenyl pyrophosphatase). Cold stress drastically modulated genes involved in terpenoid and alkaloids. Relating to transcription factors, AP2-EREBP, MADS-box, WRKY22, MYB, homoebox genes members were significantly modulated by drought stress whereas cold stress enhanced AP2-EREBPs, bZIP members, MYB7, BELL 1 and one bHLH member. C2C2-CO-LIKE, MADS-box and a homeobox (HOMEOBOX3) were mostly repressed in response to heat. Gene set enrichment analysis showed that ubiquitin-mediated protein degradation was enhanced by heat, which unexpectedly repressed glutaredoxin genes. Cold stress mostly upregulated MAP kinases (mitogen-activated protein kinase). Findings of this work will allow the identification of new molecular markers conserved across crops linked to major genes involved in quantitative agronomic traits affected by different abiotic stress.


2020 ◽  
Author(s):  
Faiza Ali ◽  
Ghulam Qanmber ◽  
Zhenzhen Wei ◽  
Daoqian Yu ◽  
Yonghui Li ◽  
...  

Abstract Background: GGPP (geranyl geranyl diphosphate) is produced in the isoprenoid pathway and mediates the function of various plant metabolites, which is synthesized by GGPPS (GGPP synthases) in plants. GGPPS characterization has not been performed in any plant species except Arabidiosis thaliana. Here, we performed a complete computational and bioinformatics analysis of GGPPS and detected their transcription expression pattern in Gossypium hirsutum for the first time in order to explore their evolutionary relationship and potential functions. We unravel evolutionary relationship, conserved sequence logos, gene duplication and potential involvement in plant development and abiotic stresses tolerance of GGPPS genes in G. hirsutum.Results: A total of 134 GGPPS genes from 17 plant species were identified. Evolutionary analysis divided GGPPS genes into five groups and indicated their divergence from a common ancestor. Further, GGPPS family genes were conserved during evolution and underwent segmental duplication. 25 GhGGPPS genes identified showed diverse expression pattern particularly in ovule and fiber development indicating their vital and divers roles in the fiber development. Additionally, GhGGPPS genes exhibited wide range of responses when subjected to abiotic (heat, cold, NaCl and PEG) and hormonal (BL, GA, IAA, SA and MeJA) stresses. Conclusions: Collectively, GGPPS genes are evolutionary conserved, may are involved in different development stages and stress signaling pathways, some potential key genes (e.g. GhGGPP4, GhGGPP9, GhGGPP15) were suggested and provide valuable source for cotton breeding in fiber quality and resistant to various stresses.


2019 ◽  
Author(s):  
Mingjia Tang ◽  
Liang Xu ◽  
Yan Wang ◽  
Wanwan Cheng ◽  
Xiaobo Luo ◽  
...  

Abstract Background Abiotic stresses due to climate change pose a great threat to crop production. Heat shock transcription factors (HSFs) are vital regulators that play key roles in protecting plants against various abiotic stresses. Therefore, the identification and characterization of HSFs is imperative to dissect the mechanism responsible for plant stress responses. Although the HSF gene family has been extensively studied in several plant species, its characterization, evolutionary history and expression patterns in the radish (Raphanus sativus L.) remain limited. Results In this study, 33 RsHSF genes were obtained from the radish genome, which were classified into three main groups and 12 subgroups based on HSF protein domain structure. Chromosomal localization analysis revealed that 28 of 33 RsHSF genes were located on nine chromosomes, and 10 duplicated RsHSF genes were grouped into eight gene pairs by whole genome duplication (WGD). Moreover, there were 23 or 9 pairs of orthologous HSFs were identified between radish and Arabidopsis or rice, respectively. Comparative analysis revealed a close relationship among radish, Chinese cabbage and Arabidopsis. RNA-seq data showed that eight RsHSF genes, including RsHSF-03, were highly expressed in the leaf, root, cortex, cambium and xylem, results that these genes might be involved in plant growth and development. Further, quantitative real-time polymerase chain reaction (RT-qPCR) indicated that the expression patterns of 12 RsHSF genes varied upon exposure to different abiotic stresses, including heat, salt, and heavy metals. This data indicated that the RsHSFs may be involved in abiotic stress response. Conclusions These results could provide fundamental insights into the characteristics and evolution of the HSF family and facilitate further dissection of the molecular mechanism responsible for radish abiotic stress responses.


2019 ◽  
Author(s):  
Mingjia Tang ◽  
Liang Xu ◽  
Yan Wang ◽  
Wanwan Cheng ◽  
Xiaobo Luo ◽  
...  

Abstract Background Abiotic stresses due to climate change pose a great threat to crop production. Heat shock transcription factors (HSFs) are vital regulators that play key roles in protecting plants against various abiotic stresses. Therefore, the identification and characterization of HSFs is imperative to dissect the mechanism responsible for plant stress responses. Although the HSF gene family has been extensively studied in several plant species, its characterization, evolutionary history and expression patterns in the radish (Raphanus sativus L.) remain limited. Results In this study, 33 RsHSF genes were obtained from the radish genome, which were classified into three main groups and 12 subgroups based on HSF protein domain structure. Chromosomal localization analysis revealed that 28 of 33 RsHSF genes were located on nine chromosomes, and 10 duplicated RsHSF genes were grouped into eight gene pairs by whole genome duplication (WGD). Moreover, there were 23 or 9 pairs of orthologous HSFs were identified between radish and Arabidopsis or rice, respectively. Comparative analysis revealed a close relationship among radish, Chinese cabbage and Arabidopsis. RNA-seq data showed that eight RsHSF genes, including RsHSF-03, were highly expressed in the leaf, root, cortex, cambium and xylem, results that these genes might be involved in plant growth and development. Further, quantitative real-time polymerase chain reaction (RT-qPCR) indicated that the expression patterns of 12 RsHSF genes varied upon exposure to different abiotic stresses, including heat, salt, and heavy metals. This data indicated that the RsHSFs may be involved in abiotic stress response. Conclusions These results could provide fundamental insights into the characteristics and evolution of the HSF family and facilitate further dissection of the molecular mechanism responsible for radish abiotic stress responses.


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Mingjia Tang ◽  
Liang Xu ◽  
Yan Wang ◽  
Wanwan Cheng ◽  
Xiaobo Luo ◽  
...  

Abstract Background Abiotic stresses due to climate change pose a great threat to crop production. Heat shock transcription factors (HSFs) are vital regulators that play key roles in protecting plants against various abiotic stresses. Therefore, the identification and characterization of HSFs is imperative to dissect the mechanism responsible for plant stress responses. Although the HSF gene family has been extensively studied in several plant species, its characterization, evolutionary history and expression patterns in the radish (Raphanus sativus L.) remain limited. Results In this study, 33 RsHSF genes were obtained from the radish genome, which were classified into three main groups based on HSF protein domain structure. Chromosomal localization analysis revealed that 28 of 33 RsHSF genes were located on nine chromosomes, and 10 duplicated RsHSF genes were grouped into eight gene pairs by whole genome duplication (WGD). Moreover, there were 23 or 9 pairs of orthologous HSFs were identified between radish and Arabidopsis or rice, respectively. Comparative analysis revealed a close relationship among radish, Chinese cabbage and Arabidopsis. RNA-seq data showed that eight RsHSF genes including RsHSF-03, were highly expressed in the leaf, root, cortex, cambium and xylem, indicating that these genes might be involved in plant growth and development. Further, quantitative real-time polymerase chain reaction (RT-qPCR) indicated that the expression patterns of 12 RsHSF genes varied upon exposure to different abiotic stresses including heat, salt, and heavy metals. These results indicated that the RsHSFs may be involved in abiotic stress response. Conclusions These results could provide fundamental insights into the characteristics and evolution of the HSF family and facilitate further dissection of the molecular mechanism responsible for radish abiotic stress responses.


Sign in / Sign up

Export Citation Format

Share Document