scholarly journals Antioxidant Defense during Recovery of Resurrection Plant Haberlea rhodopensis from Drought- and Freezing-Induced Desiccation

Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 175
Author(s):  
Gergana Mihailova ◽  
Ivanina Vasileva ◽  
Liliana Gigova ◽  
Emiliya Gesheva ◽  
Lyudmila Simova-Stoilova ◽  
...  

In this study, the contribution of nonenzymatic (ascorbate, glutathione) and enzymatic antioxidants (superoxide dismutase, catalase, glutathione reductase, glutathione S-transferase) in the first hours of recovery of the resurrection plant Haberlea rhodopensis from drought- and freezing-induced desiccation was assessed. The initial stage of recovery after desiccation is critical for plants, but less investigated. To better understand the alterations in the activity of antioxidant enzymes, their isoenzyme patterns were determined. Our results showed that ascorbate content remained high during the first 9 h of rehydration of desiccated plants and declined when the leaves′ water content significantly increased. The glutathione content remained high at the first hour of rehydration and then strongly decreased. The changes in ascorbate and glutathione content during recovery from drought- and freezing-induced desiccation showed great similarity. At the beginning of rehydration (1–5 h), the activities of antioxidant enzymes were significantly increased or remained as in dry plants. During 7–24 h of rehydration, certain differences in the enzymatic responses between the two plant groups were registered. The maintenance of a high antioxidant activity and upregulation of individual enzyme isoforms indicated their essential role in protecting plants from oxidative damage during the onset of recovery.

2018 ◽  
Vol 36 ◽  
Author(s):  
Y. WANG ◽  
J. YU ◽  
B. ZHOU ◽  
S. SAPKOTA ◽  
F. WEI ◽  
...  

ABSTRACT: The effect of atrazine, mesotrione, and joint activity of atrazine plus mesotrione on pigment, lipid peroxidation, and antioxidant enzyme activity was studied. Atrazine and mesotrione treatments significantly reduced chlorophyll a (Chl a), chlorophyll b (Chl b), carotenoid concentrations, and protein content in bermudagrass (Cynodon dactylon L.) plants, whereas they significantly enhanced lipid peroxidation. The treatment of atrazine plus mesotrione caused greater phototoxic effect on bermudagrass than either herbicide alone, which was evident from the significantly decreased membrane stability noted as a function of the enhanced singlet oxygen and malondialdehyde (MDA) contents, as well as from the greater reduction in Chl a, Chl b, and carotenoid contents. Although bermudagrass activated the antioxidant enzymes catalase (CAT), peroxidase (POD), and glutathione S-transferase (GST), it was significantly injured after the herbicide treatments. Thus, results suggested that the enzymatic and non-enzymatic antioxidants of bermudagrass was overloaded after the treatment of atrazine plus mesotrione, and the reactive oxygen species (ROS) subsequently caused lipid peroxidation, pigment and protein degradation, as well as other cellular constituent damage.


Author(s):  
Sangeethadevi Govindasami ◽  
Veera Venkata Sathibabu Uddandrao ◽  
Nivedha Raveendran ◽  
Vadivukkarasi Sasikumar

Background: This study determined the effect of Biochanin A (BCA) on isoproterenol (ISO) induced Myocardial Infarction (MI) in male Wistar rats. Methods: Animals (weighing 150-180 g) were divided into four groups, with six animals in each group and pretreated with BCA (10mg/kg Body Weight [BW]) and ɑ-tocopherol (60mg/kg BW) for 30 days; and ISO (20mg/kg BW) was administrated subcutaneously on the 31st and 32nd day. Results: ISO-induced MI rats demonstrated the significant elevation of serum glutamic oxaloacetic transaminase, serum glutamic pyruvic transaminase, lactate dehydrogenase, creatine kinase-MB and cardiac troponin; however, concomitant pretreatment with BCA protected the rats from cardiotoxicity caused by ISO. Activities of antioxidant enzymes, such as superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase and glutathione reductase significantly reduced in the heart with ISO-induced MI. Pretreatment with BCA produced a marked reversal of these antioxidant enzymes related to MI-induced by ISO. Conclusion: In conclusion, this study suggested that BCA exerts cardioprotective effects through modulating lipid peroxidation, enhancing antioxidants, and detoxifying enzyme systems.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Israel Pérez-Torres ◽  
Verónica Guarner-Lans ◽  
Alejandra Zúñiga-Muñoz ◽  
Rodrigo Velázquez Espejel ◽  
Alfredo Cabrera-Orefice ◽  
...  

We report the effect of cross-sex hormonal replacement on antioxidant enzymes from rat retroperitoneal fat adipocytes. Eight rats of each gender were assigned to each of the following groups: control groups were intact female or male (F and M, resp.). Experimental groups were ovariectomized F (OvxF), castrated M (CasM), OvxF plus testosterone (OvxF + T), and CasM plus estradiol (CasM + E2) groups. After sacrifice, retroperitoneal fat was dissected and processed for histology. Adipocytes were isolated and the following enzymatic activities were determined: Cu-Zn superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST), and glutathione reductase (GR). Also, glutathione (GSH) and lipid peroxidation (LPO) were measured. In OvxF, retroperitoneal fat increased and adipocytes were enlarged, while in CasM rats a decrease in retroperitoneal fat and small adipocytes are observed. The cross-sex hormonal replacement in F rats was associated with larger adipocytes and a further decreased activity of Cu-Zn SOD, CAT, GPx, GST, GR, and GSH, in addition to an increase in LPO. CasM + E2exhibited the opposite effects showing further activation antioxidant enzymes and decreases in LPO. In conclusion, E2deficiency favors an increase in retroperitoneal fat and large adipocytes. Cross-sex hormonal replacement in F rats aggravates the condition by inhibiting antioxidant enzymes.


Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 176
Author(s):  
Tatjana G. Shibaeva ◽  
Elena G. Sherudilo ◽  
Alexandra A. Rubaeva ◽  
Alexander F. Titov

The effect of continuous lighting (CL, 24 h) and light spectrum on growth and nutritional quality of arugula (Eruca sativa), broccoli (Brassica oleracea var. italic), mizuna (Brassica rapa. var. nipposinica), and radish (Raphanus sativus var. radicula) were investigated in growth chambers under light-emitting diode (LED) and fluorescent lighting. Microgreens were grown under four combinations of two photoperiods (16 h and 24 h) providing daily light integral (DLI) of 15.6 and 23.3 mol m−2 day−1, correspondingly) with two light spectra: LED lamps and fluorescent lamps (FLU). The results show that fresh and dry weights as well as leaf mass per area and robust index of harvested arugula, broccoli, mizuna, and radish seedlings were significantly higher under CL compared to 16 h photoperiod regardless of light quality. There were no visible signs of leaf photodamage. In all CL-treated plants higher chlorophyll a/b and carotenoid-to-chlorophyll ratios were observed in all plants except mizuna. CL treatment was beneficial for anthocyanin, flavonoid, and proline accumulation. Higher activities of antioxidant enzymes (catalase, superoxide dismutase, ascorbate peroxidase, and guaiacol peroxidase) were also observed in CL-treated plants. In most cases, the effects were more pronounced under LED lighting. These results indicate that plants under mild oxidative stress induced by CL accumulated more non-enzymatic antioxidants and increased the activities of antioxidant enzymes. This added nutritional value to microgreens that are used as functional foods providing health benefits. We suggest that for arugula, broccoli, mizuna, and radish, an LED CL production strategy is possible and can have economic and nutritional benefits.


2020 ◽  
Vol 30 (1) ◽  
pp. e34702
Author(s):  
Tatiane Cordeiro Luiz ◽  
Ana Paula Simões Da Cunha ◽  
Danilo Henrique Aguiar ◽  
Marina Mariko Sugui ◽  
Rogério de Campos Bicudo ◽  
...  

AIMS: This study aimed to investigate the effects of crude extract of Carica papaya leaves on oxidative stress in mice induced by cyclophosphamide, as well as phytochemical profile characterization of this extract.METHODS: The male Swiss mice received 15 days of treatment with the extract (500 mg kg-1, via gavage) and intraperitoneal injection of cyclophosphamide (75 mg kg-1) or saline (0.9%) on the 15th day. After 24 h the last treatment, the animals were anesthetized for blood withdrawal, sacrificed and removal of the organs for analyses (liver, kidney and heart). In the biochemical tests were determined: hematological parameters in blood, aminotransferases, alkaline phosphatase, glucose and total cholesterol dosages in plasma, enzymatic and non-enzymatic antioxidants and lipid damage marker were evaluated in different tissues, besides genotoxic and histopathological analyzes.RESULTS: In the extract of Carica papaya leaves, the flavonoids quercetin-3β-D-glucoside and rutin were identified, besides present positive results for alkaloids, saponins and tannins. This extract increased the activity of glutathione-S-transferase and catalase enzymes in the liver and reduced the levels of reduced glutathione in the kidneys and hematocrit levels, red cell count, and hemoglobin. It promoted the decrease of the reactive species of thiobarbituric acid (TBARS) in the kidneys and the activity of enzyme aspartate aminotransferase in the plasma and was antimutagenic in the micronucleus test.CONCLUSIONS: The study showed that extract of Carica papaya was beneficial against oxidative events and prevented DNA damage. The extract also showed hepatotoxicity, therefore prolonged infusion of papaya leaves is not advisable.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Shinichiro Kuroki ◽  
Roumiana Tsenkova ◽  
Daniela Moyankova ◽  
Jelena Muncan ◽  
Hiroyuki Morita ◽  
...  

2020 ◽  
pp. ijgc-2020-001587
Author(s):  
Daciele Paola Preci ◽  
Angélica Almeida ◽  
Anne Liss Weiler ◽  
Maria Luiza Mukai Franciosi ◽  
Andréia Machado Cardoso

The pathogenesis of cervical cancer is related to oxidative damage caused by persistent infection by one of the oncogenic types of human papillomavirus (HPV). This damage comes from oxidative stress, which is the imbalance caused by the increase in reactive oxygen and nitrogen species and impaired antioxidant mechanisms, promoting tumor progression through metabolic processes. The incorporation of HPV into the cellular genome leads to the expression of oncoproteins, which are associated with chronic inflammation and increased production of reactive oxygen species, oxidizing proteins, lipids and DNA. The increase in these parameters is related, in general, to the reduction of circulating levels of enzymatic antioxidants—superoxide dismutase, catalase, glutathione peroxidase and glutathione-S-transferase; and non-enzymatic antioxidants—reduced glutathione, coenzyme Q10 and vitamins A, C and E, according to tumor staging. In contrast, some enzymatic antioxidants suffer upregulation in the tumor tissue as a way of adapting to the oxidative environment generated by themselves, such as glutathione-S-transferase, reduced glutathione, glutathione peroxidase, superoxide dismutase 2, induced nitric oxide synthase, peroxiredoxins 1, 3 and 6, and thioredoxin reductase 2. The decrease in the expression and activity of certain circulatory antioxidants and increasing the redox status of the tumor cells are thus key to cervical carcinoma prognosis. In addition, vitamin deficit is considered a possible modifiable risk factor by supplementation, since the cellular functions can have a protective effect on the development of cervical cancer. In this review, we will discuss the impact of oxidative damage on cervical cancer progression, as well as the main oxidative markers and therapeutic potentialities of antioxidants.


2019 ◽  
Vol 49 (1) ◽  
pp. 41-47
Author(s):  
Ana Paula Simões da CUNHA ◽  
Luana BALDISSERA ◽  
Débora Linsbinski PEREIRA ◽  
Lucineia Reuse ALBIERO ◽  
Lindsey CASTOLDI ◽  
...  

ABSTRACT Copaifera multijuga, commonly known as copaiba, is popularly used in the form of tea for various conditions due to the presence of antioxidant substances in its composition, which protect cells against damage caused by free radicals. Its oleoresin is also used as an anti-inflammatory and antitumoral agent. The present study investigated the antioxidant effect of the ethanolic extract of copaiba stem bark on Swiss mice inoculated with solid Ehrlich tumors. Mice were inoculated subcutaneously with 1x106 Ehrlich’s tumor cells and treated via gavage with ethanolic extract of copaiba for thirty days, with doses varying between 100 and 200 mg kg-1. Biochemical analyses of enzymatic antioxidants [superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST)], non-enzymatic antioxidants [reduced glutathione (GSH) and ascorbic acid (ASA)], substances reactive to thiobarbituric acid (TBARS) and protein carbonylation (carbonyl) in different tissues were significantly affected. The extract administered at 200 mg kg-1 presented higher antioxidant capacity in the liver, increased CAT, GST, GSH and decreased TBARS, as well as increased CAT activity and protein carbonylation in brain tissue. The results showed that the copaiba extract was able to reverse the oxidative stress caused by solid Ehrlich tumor, probably due to the presence of antioxidant compounds, and had potential antineoplasic effect after a 30-day treatment.


2012 ◽  
Vol 10 (1) ◽  
pp. 215-220 ◽  
Author(s):  
Daiane Ferreira ◽  
Taís Cristina Unfer ◽  
Hélio Carlos Rocha ◽  
Luiz Carlos Kreutz ◽  
Gessi Koakoski ◽  
...  

An experiment was conducted to evaluate the potential of honey, propolis, and bee pollen for the reversal of lipid peroxidation induced by tebuconazole (TEB) in South American catfish (Rhamdia quelen), in which the concentration of thiobarbituric acid reactive substances (TBARS), the activity of the antioxidant enzyme glutathione-S-transferase (GST) and the concentrations of non-enzymatic antioxidants, reduced glutathione (GSH), ascorbic acid, and non-protein thiols were assessed. Honey (0.125 g L-1) and bee pollen (0.05 g L-1) added to the water reverse the production of TBARS induced by TEB, while propolis demonstrated a pro-oxidant effect, inducing an increase in TBARS production. The data presented herein suggest that the addition of water to honey and bee pollen potentially protects against the oxidative stress caused by agrichemicals.


Sign in / Sign up

Export Citation Format

Share Document