scholarly journals Nutritional Value and Bioactive Compounds of Leaves and Grains from Quinoa (Chenopodium quinoa Willd.)

Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 213
Author(s):  
Elena Villacrés ◽  
María Quelal ◽  
Susana Galarza ◽  
Diana Iza ◽  
Edmundo Silva

Quinoa is an important crop for food security and food sovereignty in Ecuador. In this study, we evaluated the nutritional value, bioactive compounds, and antinutrient compounds of leaves and grains of the Ecuadorian quinoa variety Tunkahuan, and we identified significant differences between the nutrient content in the leaves and grains. The quinoa leaves presented a higher protein content than the grains, as well as inorganic nutrients such as calcium, phosphorus, iron, and zinc. Both the grains and leaves had an appreciable phenolic content. In addition, the quinoa grains presented a higher content of the antinutrient saponin than the leaves, while the leaves contained more nitrates and oxalates than the grains. Thus, quinoa leaves and grains exhibit excellent potential for application in the food and pharmaceutical industries.

2016 ◽  
Vol 6 (4) ◽  
pp. 219 ◽  
Author(s):  
Sunisa Siripongvutikorn ◽  
Rungtip Rattanapon ◽  
Worapong Usawakesmanee ◽  
Chakree Thongraung

Background:  Wheatgrass (Triticum aestivum L.) is worldwide consumed and has been used for health benefit or functional or nutraceutical food while ricegrass (Oryza sativa L.) is still not well documented, which is also in the grass family (Poaceae) as wheatgrass and it is also produced with aged around 8-10 d which similar to wheatgrass production. Moreover, priming is a process for enhancing seed vigour properties and improving bioactive compounds. Utilization of fish protein hydrolysate (FPH) for liquid fertilizer is more interesting in order to increasing of nutritional value and bioactive compounds as well as antioxidant activity of many plants.Objective: To investigate the nutritional value and bioactivity of ricegrass as affected of priming process with fish protein hydrolysate.Methods: The Chainat 1 rice seeds were soaked with FPH at 0, 5, 10, 15 and 20 ppm at a ratio of rice seed to FPH as 1:5 and grown for 7 d, thereafter, the ricegrass were determined seed vigour properties, nutritional value and bioactive compounds such as chlorophyll, carotenoids, total phenolic and phytic acid. The ricegrass was extracted with water at a ratio 1:2 (ricegrass : water), then homogenized and centrifuged at 10000xg for 20 min. The thereafter, the supernatant was brought to freeze dry. The freeze-dried powder was dissolved in distilled water and brought to measure total phenolic content by Folin-Ciocalteu method. Antioxidant activities were determined by 3 assays as ferric reducing antioxidant power (FRAP), 2,2-diphenyl-1-picryl hydrazyl radical (DPPH) and 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid radical (ABTS) methodsResults: The results showed that FPH at 10 ppm significantly improved (p<0.05) seed vigour properties including germination percentage, germination rate, height and fresh weight and nutritional values such as ash, protein, fat and carbohydrate. In addition, bioactive compounds including chlorophyll a and b, total chlorophyll and carotenoid content in ricegrass primed with 10 ppm FPH were higher than control. Phytic acid content in ricegrass primed with FPH at 5 and 10 ppm but not 15 and 20 ppm was lower than control. The ricegrass primed with FPH at 10 ppm yielded highest total phenolic content. Though, ABTS activity was not highest in rice primed with FPH at 10 ppm, DPPH and FRAP assays were highest.Conclusion: The ricegrass primed with FPH was significant improved seed vigour properties, nutritional value, bioactive compounds and antioxidant activity. The appropriate of FPH priming for ricegrass was 10 ppm because it could improve seed vigour, nutritional value and bioactive compounds including chlorophyll, carotenoid, total phenolic content and antioxidant activity determined as FRAP, DPPH and ABTS and reduce the anti-nutrient compounds as phytic acid.Keywords: Ricegrass, Fish protein hydrolysate, Nutritional value, Bioactive compound, Antioxidant


Foods ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1614
Author(s):  
Tijana Ilić ◽  
Margarita Dodevska ◽  
Mirjana Marčetić ◽  
Dragana Božić ◽  
Igor Kodranov ◽  
...  

Since the fruits of Lycium L. species (Fructus lycii, goji berries) are promoted as a “superfood” with plenty of health benefits, there is extensive research interest in their nutritional and phytochemical composition. In the present study, the nutritional value, minerals, fatty acid composition, and bioactive compounds of L. barbarum L., red, yellow, and black goji berry (L. ruthenicum Murray.) cultivated in Serbia were investigated. Antioxidant and antimicrobial properties of their methanol extracts were assessed. Red goji berry had the highest content of fats, dietary fiber, iron, total carotenoids, and 2-O-β-d-glucopyranosyl-l-ascorbic acid (AA-2βG). The yellow goji berry extract showed the highest level of flavonoids and the most prominent antimicrobial (especially against Gram-negative bacteria) properties. The highest total phenolic content and the most potent antioxidant activity were observed for the extract of black goji berry. Therefore, all goji berries could be a valuable source of bioactive compounds in the food and pharmaceutical industry.


2020 ◽  
Vol 50 (3) ◽  
pp. 460-469
Author(s):  
Damir Zyaitdinov ◽  
Alexandr Ewteew ◽  
Anna Bannikova

Introduction. Bioactive compounds are a very popular topic of modern food science, especially when it concerns obtaining polyphenols from cereals. The antiradical, antioxidant, and anti-inflammatory properties of these ingredients allow them to inhibit and prevent coronary, artery, and cardiovascular diseases, as well as several types of cancer. Encapsulation is an effective technology that protects bioactive ingredients during processing and storage. In addition, it also prevents any possible interaction with other food constituents. The research objective was to obtain effective tools of controlled delivery of bioactive compounds. The study featured whey protein as a wall material in combination with maltodextrin to encapsulate the bioactives from oat bran. Study objects and methods. The processed material was oat bran. The technology of its biotransformation was based on ultrasound processing and enzymatic hydrolysis. The antioxidant properties were determined using a coulometer of Expert – 006-antioxidants type (Econix-Expert LLC, Moscow, Russia). Separation and quantitative determination of extract were followed using a Stayer HPLC device (Akvilon, Russia) and a system column Phenomenex Luna 5u C18(2) (250×4.6 mm). The total phenolic content was measured by a modified Folin-Ciocalteu method. To prepare microcapsules, whey protein concentrate (WPC) and maltodextrin (MD) solutions were mixed at ratios 6:4, 4:6, and 5:5. After that, the mixes were treated by ultrasonication and 10% w/w of guar gum solution as double wall material. The encapsulation efficiency (EE) was determined as a ratio of encapsulated phenolic content to total phenolic content. A digestion protocol that simulates conditions of the human gastric and intestinal tract was adapted to investigate the release kinetics of the extracts. Results and discussion. Ferulic acid is the main antioxidant in cereals. Its amount during extraction was consistent with published data: 9.2 mg/mL after ultrasound exposure, 9.0 mg/mL after enzymatic extraction, and 8.6 mg/mL after chemical treatment. The antioxidant activity of the obtained polyphenols was quite high and reached 921 cu/mL. It depended on the concentration of the preparation in the solution and the extraction method. The polyphenols obtained by ultrasonic exposure and enzyme preparations proved to have a more pronounced antioxidant activity. The highest EE (95.28%) was recorded at WPC:MD ratio of 60:40. In vitro enzymatic hydrolysis protocol simulating digestion in the gastrointestinal tract was used to study the effect of capsule structural characteristics on the kinetics of polyphenol release. The percentage of o polyphenols released from capsules ranged from 70% to 83% after two hours of digestion, which confirmed the effectiveness of microencapsulation technology. Conclusion. The research confirmed the possibility of using polyphenols obtained by the biotechnological method from oat bran as functional ingredients. Eventually, they may be used in new functional products with bifidogenic properties. Whey protein can be used to encapsulate polyphenols as the wall material of microcapsules.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 234 ◽  
Author(s):  
Yili Hong ◽  
Zening Wang ◽  
Colin J. Barrow ◽  
Frank R. Dunshea ◽  
Hafiz A. R. Suleria

Stone fruits, including peach (Prunus persica L.), nectarine (Prunus nucipersica L.), plum (Prunus domestica L.) and apricot (Prunus armeniaca L.) are common commercial fruits in the market. However, a huge amount of stone fruits waste is produced throughout the food supply chain during picking, handling, processing, packaging, storage, transportation, retailing and final consumption. These stone fruits waste contain high phenolic content which are the main contributors to the antioxidant potential and associated health benefits. The antioxidant results showed that plum waste contained higher concentrations of total phenolic content (TPC) (0.94 ± 0.07 mg gallic acid equivalents (GAE)/g) and total flavonoid content (TFC) (0.34 ± 0.01 mg quercetin equivalents (QE)/g), while apricot waste contained a higher concentration of total tannin content (TTC) (0.19 ± 0.03 mg catechin equivalents (CE)/g) and DPPH activity (1.47 ± 0.12 mg ascorbic acid equivalents (AAE)/g). However, nectarine waste had higher antioxidant capacity in ferric reducing-antioxidant power (FRAP) (0.98 ± 0.02 mg AAE/g) and total antioxidant capacity (TAC) (0.91 ± 0.09 mg AAE/g) assays, while peach waste showed higher antioxidant capacity in 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assay (0.43 ± 0.09 mg AAE/g) as compared to other stone fruits waste. Qualitative and quantitative phenolic analysis of Australian grown stone fruits waste were conducted by liquid chromatography coupled with electrospray-ionization quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF-MS/MS) and HPLC-photodiode array detection (PDA). The LC-ESI-QTOF-MS/MS result indicates that 59 phenolic compounds were tentatively characterized in peach (33 compounds), nectarine (28), plum (38) and apricot (23). The HPLC-PDA indicated that p-hydroxybenzoic acid (18.64 ± 1.30 mg/g) was detected to be the most dominant phenolic acid and quercetin (19.68 ± 1.38 mg/g) was the most significant flavonoid in stone fruits waste. Hence, it could be concluded that stone fruit waste contains various phenolic compounds and have antioxidant potential. The results could support the applications of these stone fruit wastes in other food, feed, nutraceutical and pharmaceutical industries.


Proceedings ◽  
2020 ◽  
Vol 70 (1) ◽  
pp. 9
Author(s):  
Franklin Chamorro ◽  
María Carpena ◽  
Bernabé Nuñez-Estevez ◽  
Miguel A. Prieto ◽  
Jesus Simal-Gandara

Currently, agricultural production generates large amounts of organic waste, both from the maintenance of farms and crops, and from the industrialization of the product. Generally, these wastes are accumulated in landfills or burned, sometimes causing environmental problems. However, many scientific studies suggest that these residues are rich in bioactive compounds, so these matrices could be revalued for their use in food, cosmetic, or pharmaceutical industries. In this way, the circular and sustainable economy is favored, while obtaining products with high added value. In this case, this approach is applied to the residues generated from kiwi production, since numerous studies have shown the high content of kiwi in bioactive compounds of interest, such as phenolic compounds, vitamins, and carotenoids. These compounds have been reported for their antioxidant, anti-inflammatory, and antimicrobial activities, among other beneficial properties for health such as its use as prebiotic. Therefore, this article reviews the potential of residues derived from industrial processing and agricultural maintenance of kiwi as promising matrices for the development of new nutraceutical, cosmetic, or pharmacological products, obtaining, at the same time, economic returns and a reduction of the environmental impact of this industry, attaching it to the perspective of the circular economy.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 788
Author(s):  
João Paulo de Lima Ferreira ◽  
Alexandre José de Melo Queiroz ◽  
Rossana Maria Feitosa de Figueirêdo ◽  
Wilton Pereira da Silva ◽  
Josivanda Palmeira Gomes ◽  
...  

The residue generated from the processing of Tacinga inamoena (cumbeba) fruit pulp represents a large amount of material that is discarded without proper application. Despite that, it is a raw material that is source of ascorbic acid, carotenoids and phenolic compounds, which are valued in nutraceutical diets for allegedly combating free radicals generated in metabolism. This research paper presents a study focused on the mathematical modeling of drying kinetics and the effect of the process on the level of bioactive of cumbeba residue. The experiments of cumbeba residue drying (untreated or whole residue (WR), crushed residue (CR) and residue in the form of foam (FR)) were carried out in a fixed-bed dryer at four air temperatures (50, 60, 70 and 80 °C). Effective water diffusivity (Deff) was determined by the inverse method and its dependence on temperature was described by an Arrhenius-type equation. It was observed that, regardless of the type of pretreatment, the increase in air temperature resulted in higher rate of water removal. The Midilli model showed better simulation of cumbeba residue drying kinetics than the other models tested within the experimental temperature range studied. Effective water diffusivity (Deff) ranged from 6.4890 to 11.1900 × 10−6 m2/s, 2.9285 to 12.754 × 10−9 m2/s and 1.5393 × 10−8 to 12.4270 × 10−6 m2/s with activation energy of 22.3078, 46.7115 and 58.0736 kJ/mol within the temperature range of 50–80 °C obtained for the whole cumbeba, crushed cumbeba and cumbeba residue in the form of foam, respectively. In relation to bioactive compounds, it was observed that for a fixed temperature the whole residue had higher retention of bioactive compounds, especially phenolic compounds, whereas the crushed residue and the residue in the form of foam had intermediate and lower levels, respectively. This study provides evidence that cumbeba residue in its whole form can be used for the recovery of natural antioxidant bioactive compounds, mainly phenolic compounds, with the possibility of application in the food and pharmaceutical industries.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. Shahinuzzaman ◽  
Parul Akhtar ◽  
N. Amin ◽  
Yunus Ahmed ◽  
Farah Hannan Anuar ◽  
...  

AbstractIn this study, the extraction conditions extracted maximize amounts of phenolic and bioactive compounds from the fruit extract of Ficus auriculata by using optimized response surface methodology. The antioxidant capacity was evaluated through the assay of radical scavenging ability on DPPH and ABTS as well as reducing power assays on total phenolic content (TPC). For the extraction purpose, the ultrasonic assisted extraction technique was employed. A second-order polynomial model satisfactorily fitted to the experimental findings concerning antioxidant activity (R2 = 0.968, P < 0.0001) and total phenolic content (R2 = 0.961, P < 0.0001), indicating a significant correlation between the experimental and expected value. The highest DPPH radical scavenging activity was achieved 85.20 ± 0.96% at the optimum extraction parameters of 52.5% ethanol (v/v), 40.0 °C temperature, and 22 min extraction time. Alternatively, the highest yield of total phenolic content was found 31.65 ± 0.94 mg GAE/g DF at the optimum extraction conditions. From the LC–ESI–MS profiling of the optimized extract, 18 bioactive compounds were tentatively identified, which may regulate the antioxidant activity of fruits of F. auriculata.


1994 ◽  
Vol 31 (5) ◽  
pp. 546-552 ◽  
Author(s):  
T. Yanai ◽  
T. Masegi ◽  
K. Ueda ◽  
J. Manabe ◽  
M. Teranishi ◽  
...  

Mineralization of various degrees was found in the brains of 79 (59%) of 134 cynomolgus monkeys ( Macaca fascicularis). There was no age dependency in the incidence or severity, nor were there any abnormalities in growth, weight gain, or neurologic signs, although a slight sex difference was observed. The lesions, which were basophilic and intensely positive for periodic acid-Schiff or von Kossa stain, occurred in the vascular walls of the globus pallidus in two types: globoid bodies with prominent concentric lamellar structures in and around the arteriolar and venular wall (type A) and fine granules in the media of small or medium-sized arteries (type B). Electron microscopic examination revealed dense deposits in the degenerated media of small or medium-sized arteries or the thickened walls of the arterioles. X-ray microanalysis demonstrated the presence of calcium, phosphorus, iron, zine, magnesium, and aluminum.


Molecules ◽  
2012 ◽  
Vol 17 (7) ◽  
pp. 8359-8377 ◽  
Author(s):  
Xesús Feás ◽  
M. Pilar Vázquez-Tato ◽  
Leticia Estevinho ◽  
Julio A. Seijas ◽  
Antonio Iglesias

Sign in / Sign up

Export Citation Format

Share Document