scholarly journals Genome-Wide Identification of WRKY Transcription Factors in the Asteranae

Plants ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 393 ◽  
Author(s):  
Hongyu Guo ◽  
Yantong Zhang ◽  
Zhuo Wang ◽  
Limei Lin ◽  
Minghui Cui ◽  
...  

The WRKY transcription factors family, which participates in many physiological processes in plants, constitutes one of the largest transcription factor families. The Asterales and the Apiales are two orders of flowering plants in the superorder Asteranae. Among the members of the Asterales, globe artichoke (Cynara cardunculus var. scolymus L.), sunflower (Helianthus annuus L.), and lettuce (Lactuca sativa L.) are important economic crops worldwide. Within the Apiales, ginseng (Panax ginseng C. A. Meyer) and Panax notoginseng (Burk.) F.H. Chen are important medicinal plants, while carrot (Daucus carota subsp. carota L.) has significant economic value. Research involving genome-wide identification of WRKY transcription factors in the Asterales and the Apiales has been limited. In this study, 490 WRKY genes, 244 from three species of the Apiales and 246 from three species of the Asterales, were identified and categorized into three groups. Within each group, WRKY motif characteristics and gene structures were similar. WRKY gene promoter sequences contained light responsive elements, core regulatory elements, and 12 abiotic stress cis-acting elements. WRKY genes were evenly distributed on each chromosome. Evidence of segmental and tandem duplication events was found in all six species in the Asterales and the Apiales, with segmental duplication inferred to play a major role in WRKY gene evolution. Among the six species, we uncovered 54 syntenic gene pairs between globe artichoke and lettuce. The six species are thus relatively closely related, consistent with their traditional taxonomic placement in the Asterales. This study, based on traditional species classifications, was the first to identify WRKY transcription factors in six species from the Asteranae. Our results lay a foundation for further understanding of the role of WRKY transcription factors in species evolution and functional differentiation.

Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1867
Author(s):  
Yan Li ◽  
Xiang Li ◽  
Jiatong Wei ◽  
Kewei Cai ◽  
Hongzhi Zhang ◽  
...  

WRKY transcription factors constitute one of the largest gene families in plants and are involved in many biological processes, including growth and development, physiological metabolism, and the stress response. In earlier studies, the WRKY gene family of proteins has been extensively studied and analyzed in many plant species. However, information on WRKY transcription factors in Acer truncatum has not been reported. In this study, we conducted genome-wide identification and analysis of the WRKY gene family in A. truncatum, 54 WRKY genes were unevenly located on all 13 chromosomes of A. truncatum, the highest number was found in chromosomes 5. Phylogenetic relationships, gene structure, and conserved motif identification were constructed, and the results affirmed 54 AtruWRKY genes were divided into nine subgroup groups. Tissue species analysis of AtruWRKY genes revealed which were differently exhibited upregulation in flower, leaf, root, seed and stem, and the upregulation number were 23, 14, 34, 18, and 8, respectively. In addition, the WRKY genes expression in leaf under cold stress showed that more genes were significantly expressed under 0, 6 and 12 h cold stress. The results of this study provide a new insight the regulatory function of WRKY genes under abiotic and biotic stresses.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Haoyang Li ◽  
Lixia Li ◽  
Guodong ShangGuan ◽  
Chang Jia ◽  
Sinan Deng ◽  
...  

Abstract The basic leucine zipper (bZIP) is a widely known transcription factors family in eukaryotes. In plants, the role of bZIP proteins are crucial in various biological functions such as plant growth and development, seed maturation, response to light signal and environmental stress. To date, bZIP protein family has been comprehensively identified in Arabidopsis, castor, rice, ramie, soybean and other plant species, however, the complete genome-wide investigation of Carthamus tinctorius-bZIP family still remains unexplained. Here, we identified 52 putative bZIP genes from Carthamus tinctorius using a draft genome assembly and further analyzed their evolutionary classification, physicochemical properties, Conserved domain analysis, functional differentiation and the investigation of expression level in different tissues. Based on the common bZIP domain, CtbZIP family were clustered into 12 subfamilies renamed as (A–J, S, X), of which the X is a unique subfamily to Carthamus tinctorius. A total of 20 conserved protein motifs were found in CtbZIP proteins. The expression profiling of CtbZIP genes deciphered their tissue-specific pattern. Furthermore, the changes in CtbZIP transcript abundance suggested that their transcription regulation could be highly influenced by light intensity and hormones. Collectively, this study highlights all functional and regulatory elements of bZIP transcription factors family in Carthamus tinctorius which may serve as potential candidates for functional characterization in future.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Peng Di ◽  
Ping Wang ◽  
Min Yan ◽  
Peng Han ◽  
Xinyi Huang ◽  
...  

Abstract Background Panax ginseng is a well-known medicinal plant worldwide. As an herbal medicine, ginseng is also known for its long lifecycle, which can reach several decades. WRKY proteins play regulatory roles in many aspects of biological processes in plants, such as responses to biotic or abiotic stress, plant development, and adaptation to environmental challenges. Genome-wide analyses of WRKY genes in P. ginseng have not been reported. Results In this study, 137 PgWRKY genes were identified from the ginseng genome. Phylogenetic analysis showed that the PgWRKYs could be clustered into three primary groups and five subgroups. Most of the PgWRKY gene promoters contained several kinds of hormone- and stress-related cis-regulatory elements. The expression patterns of PgWRKY genes in 14 different tissues were analyzed based on the available public RNA-seq data. The responses of the PgWRKY genes to heat, cold, salt and drought treatment were also investigated. Most of the PgWRKY genes were expressed differently after heat treatment, and expression trends changed significantly under drought and cold treatment but only slightly under salt treatment. The coexpression analysis of PgWRKY genes with the ginsenoside biosynthesis pathway genes identified 11 PgWRKYs that may have a potential regulatory role in the biosynthesis process of ginsenoside. Conclusions This work provides insights into the evolution, modulation and distribution of the WRKY gene family in ginseng and extends our knowledge of the molecular basis along with modulatory mechanisms of WRKY transcription factors in ginsenoside biosynthesis.


2020 ◽  
Author(s):  
Jeky Chanwala ◽  
Suresh Satpati ◽  
Anshuman Dixit ◽  
Ajay Parida ◽  
Mrunmay Kumar Giri ◽  
...  

Abstract Background: Plants have developed various sophisticated mechanisms to cope up with climate extremes and different stress conditions, especially by involving specific transcription factors (TFs). The members of the WRKY TF family are well known for their role in plant development, phytohormone signaling and developing resistance against biotic or abiotic stresses. In this study, we performed a genome-wide screening to identify and analyze the WRKY TFs in pearl millet ( Pennisetum glaucum; PgWRKY ) , which is one of the most widely grown cereal crop in the semi-arid regions. Results: A total number of 97 putative PgWRKY proteins were identified and classified into three major Groups (I-III) based on the presence of WRKY DNA binding domain and zinc-finger motif structures. Members of Group II have been further subdivided into five subgroups (IIa-IIe) based on the phylogenetic analysis. In-silico analysis of PgWRKYs revealed the presence of various cis-regulatory elements in their promoter region like ABRE, DRE, ERE, EIRE, Dof, AUXRR, G-box, etc., suggesting their probable involvement in growth, development and stress responses of pearl millet. Chromosomal mapping evidenced uneven distribution of identified 97 PgWRKY genes across all the seven chromosomes of pearl millet. Synteny analysis of PgWRKYs established their orthologous and paralogous relationship among the WRKY gene family of Arabidopsis thaliana, Oryza sativa and Setaria italica . Gene ontology (GO) annotation functionally categorized these PgWRKYs under cellular components, molecular functions and biological processes. Further, the differential expression pattern of PgWRKY s was noticed in different tissues (leaf, stem, root) and under both drought and salt stress conditions. The expression pattern of PgWRKY33 , PgWRKY62 and PgWRKY65 indicates their probable involvement in both dehydration and salinity stress responses in pearl millet. Conclusion: Functional characterization of identified PgWRKY s can be useful in delineating their role behind the natural stress tolerance of pearl millet against harsh environmental conditions. Further, these PgWRKY s can be employed in genome editing for millet crop improvement. Keywords : Pearl millet, WRKY Transcription Factors , cis-regulatory elements, Synteny, Abiotic stress


Author(s):  
Shaiq Sultan ◽  
Muhammad Amjid Ali ◽  
Rana Muhammad Atif ◽  
Farrukh Azeem ◽  
Habibullah Nadeem ◽  
...  

WRKY transcription factors are a class of DNA-binding proteins that bind with a specific sequence C/TTGACT/C known as W-Box found in promoters of genes which are regulated by these WRKYs. From previous studies, 43 different stress responsive WRKY transcription factors in Arabidopsis thaliana, identified and then categorized in three groups viz., abiotic, biotic and both of these stresses. A comprehensive genome wide analysis including chromosomal localization, gene structure analysis, multiple sequence alignment, phylogenetic analysis and promoter analysis of these WRKY genes was carried out in this study to determine the functional homology in Arabidopsis. This analysis led to the classification of these WRKY family members into 3 major groups and subgroups and showed evolutionary relationship among these groups on the base of their functional WRKY domain, chromosomal localization and intron/exon structure. The proposed groups of these stress responsive WRKY genes and annotation based on their position on chromosomes can also be explored to determine their functional homology in other plant species in relation to different stresses. The result of the present study provides indispensable genomic information for the stress responsive WRKY transcription factors in Arabidopsis and will pave the way to explain the precise role of various AtWRKYs in plant growth and development under stressed conditions.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yan-Hong Xu ◽  
Pei-Wen Sun ◽  
Xiao-Lin Tang ◽  
Zhi-Hui Gao ◽  
Zheng Zhang ◽  
...  

2021 ◽  
Vol 22 (10) ◽  
pp. 5354
Author(s):  
Jinhong Kan ◽  
Guangqi Gao ◽  
Qiang He ◽  
Qian Gao ◽  
Congcong Jiang ◽  
...  

The WRKY transcription factors (WRKYs) are known for their crucial roles in biotic and abiotic stress responses, and developmental and physiological processes. In barley, early studies revealed their importance, whereas their diversity at the population scale remains hardly estimated. In this study, 98 HsWRKYs and 103 HvWRKYs have been identified from the reference genome of wild and cultivated barley, respectively. The tandem duplication and segmental duplication events from the cultivated barley were observed. By taking advantage of early released exome-captured sequencing datasets in 90 wild barley accessions and 137 landraces, the diversity analysis uncovered synonymous and non-synonymous variants instead of loss-of-function mutations that had occurred at all WRKYs. For majority of WRKYs, the haplotype and nucleotide diversity both decreased in cultivated barley relative to the wild population. Five WRKYs were detected to have undergone selection, among which haplotypes of WRKY9 were enriched, correlating with the geographic collection sites. Collectively, profiting from the state-of-the-art barley genomic resources, this work represented the characterization and diversity of barley WRKY transcription factors, shedding light on future deciphering of their roles in barley domestication and adaptation.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0256873
Author(s):  
Fee Faysal Ahmed ◽  
Md. Imran Hossen ◽  
Md. Abdur Rauf Sarkar ◽  
Jesmin Naher Konak ◽  
Fatema Tuz Zohra ◽  
...  

RNA silencing is mediated through RNA interference (RNAi) pathway gene families, i.e., Dicer-Like (DCL), Argonaute (AGO), and RNA-dependent RNA polymerase (RDR) and their cis-acting regulatory elements. The RNAi pathway is also directly connected with the post-transcriptional gene silencing (PTGS) mechanism, and the pathway controls eukaryotic gene regulation during growth, development, and stress response. Nevertheless, genome-wide identification of RNAi pathway gene families such as DCL, AGO, and RDR and their regulatory network analyses related to transcription factors have not been studied in many fruit crop species, including banana (Musa acuminata). In this study, we studied in silico genome-wide identification and characterization of DCL, AGO, and RDR genes in bananas thoroughly via integrated bioinformatics approaches. A genome-wide analysis identified 3 MaDCL, 13 MaAGO, and 5 MaRDR candidate genes based on multiple sequence alignment and phylogenetic tree related to the RNAi pathway in banana genomes. These genes correspond to the Arabidopsis thaliana RNAi silencing genes. The analysis of the conserved domain, motif, and gene structure (exon-intron numbers) for MaDCL, MaAGO, and MaRDR genes showed higher homogeneity within the same gene family. The Gene Ontology (GO) enrichment analysis exhibited that the identified RNAi genes could be involved in RNA silencing and associated metabolic pathways. A number of important transcription factors (TFs), e.g., ERF, Dof, C2H2, TCP, GATA and MIKC_MADS families, were identified by network and sub-network analyses between TFs and candidate RNAi gene families. Furthermore, the cis-acting regulatory elements related to light-responsive (LR), stress-responsive (SR), hormone-responsive (HR), and other activities (OT) functions were identified in candidate MaDCL, MaAGO, and MaRDR genes. These genome-wide analyses of these RNAi gene families provide valuable information related to RNA silencing, which would shed light on further characterization of RNAi genes, their regulatory elements, and functional roles, which might be helpful for banana improvement in the breeding program.


Sign in / Sign up

Export Citation Format

Share Document