scholarly journals Mutagenesis Approaches and Their Role in Crop Improvement

Plants ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 467 ◽  
Author(s):  
Juhi Chaudhary ◽  
Rupesh Deshmukh ◽  
Humira Sonah

Induced mutagenesis is one of the most efficient tools that has been utilized extensively to create genetic variation as well as for identification of key regulatory genes for economically important traits toward the crop improvement. Mutations can be induced by several techniques such as physical, chemical, and insertional mutagen treatments; however, these methods are not preferred because of cost and tedious process. Nonetheless, with the advancements in next-generation sequencing (NGS) techniques, millions of mutations can be detected in a very short period of time and, therefore, considered as convenient and cost efficient. Furthermore, induced mutagenesis coupled with whole-genome sequencing has provided a robust platform for forward and reverse genetic applications. Moreover, the availability of whole-genome sequence information for large number of crops has enabled target-specific genome editing techniques as a preferable method to engineer desired mutations. The available genome editing approaches such as ZFNs (Zinc Finger Nucleases), transcription activator like effector nucleases (TALENS), and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated9 (Cas9) endonuclease have been utilized to perform site-specific mutations in several plant species. In particular, the CRISPR/Cas9 has transformed the genome editing because of its simplicity and robustness, therefore, have been utilized to enhance biotic and abiotic stress resistance. The Special Issue of Plants highlights the efforts by the scientific community utilizing mutagenesis techniques for the identification of novel genes toward crop improvement.

2021 ◽  
Vol 22 (11) ◽  
pp. 5585
Author(s):  
Sajid Fiaz ◽  
Sunny Ahmar ◽  
Sajjad Saeed ◽  
Aamir Riaz ◽  
Freddy Mora-Poblete ◽  
...  

A world with zero hunger is possible only through a sustainable increase in food production and distribution and the elimination of poverty. Scientific, logistical, and humanitarian approaches must be employed simultaneously to ensure food security, starting with farmers and breeders and extending to policy makers and governments. The current agricultural production system is facing the challenge of sustainably increasing grain quality and yield and enhancing resistance to biotic and abiotic stress under the intensifying pressure of climate change. Under present circumstances, conventional breeding techniques are not sufficient. Innovation in plant breeding is critical in managing agricultural challenges and achieving sustainable crop production. Novel plant breeding techniques, involving a series of developments from genome editing techniques to speed breeding and the integration of omics technology, offer relevant, versatile, cost-effective, and less time-consuming ways of achieving precision in plant breeding. Opportunities to edit agriculturally significant genes now exist as a result of new genome editing techniques. These range from random (physical and chemical mutagens) to non-random meganucleases (MegaN), zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), clustered regularly interspaced short palindromic repeats (CRISPR)/associated protein system 9 (CRISPR/Cas9), the CRISPR system from Prevotella and Francisella1 (Cpf1), base editing (BE), and prime editing (PE). Genome editing techniques that promote crop improvement through hybrid seed production, induced apomixis, and resistance to biotic and abiotic stress are prioritized when selecting for genetic gain in a restricted timeframe. The novel CRISPR-associated protein system 9 variants, namely BE and PE, can generate transgene-free plants with more frequency and are therefore being used for knocking out of genes of interest. We provide a comprehensive review of the evolution of genome editing technologies, especially the application of the third-generation genome editing technologies to achieve various plant breeding objectives within the regulatory regimes adopted by various countries. Future development and the optimization of forward and reverse genetics to achieve food security are evaluated.


Traditional plant breeding depends on spontaneous and induced mutations available in the crop plants. Such mutations are rare and occur randomly. By contrast, molecular breeding and genome editing are advanced breeding techniques that can enhance the selection process and produce precisely targeted modifications in any crop. Identification of molecular markers, based on SSRs and SNPs, and the availability of high-throughput (HTP) genotyping platforms have accelerated the process of generating dense genetic linkage maps and thereby enhanced application of marker-assisted breeding for crop improvement. Advanced molecular biology techniques that facilitate precise, efficient, and targeted modifications at genomic loci are termed as “genome editing.” The genome editing tools include “zinc-finger nucleases (ZNFs),” “transcription activator-like effector nucleases (TALENs),” oligonucleotide-directed mutagenesis (ODM), and “clustered regularly interspersed short palindromic repeats (CRISPER/Cas) system,” which can be used for targeted gene editing. Concepts of molecular plant breeding and genome editing systems are presented in this chapter.


2020 ◽  
Vol 21 (11) ◽  
pp. 4040 ◽  
Author(s):  
Waquar A. Ansari ◽  
Sonali U. Chandanshive ◽  
Vacha Bhatt ◽  
Altafhusain B. Nadaf ◽  
Sanskriti Vats ◽  
...  

Over the past decades, numerous efforts were made towards the improvement of cereal crops mostly employing traditional or molecular breeding approaches. The current scenario made it possible to efficiently explore molecular understanding by targeting different genes to achieve desirable plants. To provide guaranteed food security for the rising world population particularly under vulnerable climatic condition, development of high yielding stress tolerant crops is needed. In this regard, technologies upgradation in the field of genome editing looks promising. Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 is a rapidly growing genome editing technique being effectively applied in different organisms, that includes both model and crop plants. In recent times CRISPR/Cas9 is being considered as a technology which revolutionized fundamental as well as applied research in plant breeding. Genome editing using CRISPR/Cas9 system has been successfully demonstrated in many cereal crops including rice, wheat, maize, and barley. Availability of whole genome sequence information for number of crops along with the advancement in genome-editing techniques provides several possibilities to achieve desirable traits. In this review, the options available for crop improvement by implementing CRISPR/Cas9 based genome-editing techniques with special emphasis on cereal crops have been summarized. Recent advances providing opportunities to simultaneously edit many target genes were also discussed. The review also addressed recent advancements enabling precise base editing and gene expression modifications. In addition, the article also highlighted limitations such as transformation efficiency, specific promoters and most importantly the ethical and regulatory issues related to commercial release of novel crop varieties developed through genome editing.


2020 ◽  
Vol 21 (16) ◽  
pp. 5665 ◽  
Author(s):  
Sunny Ahmar ◽  
Sumbul Saeed ◽  
Muhammad Hafeez Ullah Khan ◽  
Shahid Ullah Khan ◽  
Freddy Mora-Poblete ◽  
...  

Genome editing is a relevant, versatile, and preferred tool for crop improvement, as well as for functional genomics. In this review, we summarize the advances in gene-editing techniques, such as zinc-finger nucleases (ZFNs), transcription activator-like (TAL) effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR) associated with the Cas9 and Cpf1 proteins. These tools support great opportunities for the future development of plant science and rapid remodeling of crops. Furthermore, we discuss the brief history of each tool and provide their comparison and different applications. Among the various genome-editing tools, CRISPR has become the most popular; hence, it is discussed in the greatest detail. CRISPR has helped clarify the genomic structure and its role in plants: For example, the transcriptional control of Cas9 and Cpf1, genetic locus monitoring, the mechanism and control of promoter activity, and the alteration and detection of epigenetic behavior between single-nucleotide polymorphisms (SNPs) investigated based on genetic traits and related genome-wide studies. The present review describes how CRISPR/Cas9 systems can play a valuable role in the characterization of the genomic rearrangement and plant gene functions, as well as the improvement of the important traits of field crops with the greatest precision. In addition, the speed editing strategy of gene-family members was introduced to accelerate the applications of gene-editing systems to crop improvement. For this, the CRISPR technology has a valuable advantage that particularly holds the scientist’s mind, as it allows genome editing in multiple biological systems.


Author(s):  
Baike Wang ◽  
◽  
Juan Wang ◽  
Shaoyong Huang ◽  
Yaping Tang ◽  
...  

Tremendous progress has been achieved in the field of gene editing in plants, such as with the use of zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR). Because of the potential advantages associated with mutant creation and crop germplasm innovation, genome editing technology has been rapidly developed and widely used in crop improvement in recent years. In this review, we aim to document some of the important recent developments and applications of genome-editing tools, especially with respect to gene knock-ins. We introduce the mechanism underlying knock-ins and different outcomes of insertion. We also discuss genome editing tools and methods developed to improve insertion efficiencies. Additionally, we review the recent trends in genetic editing biotechnologies; several strategies are being developed to further improve the efficiency of plant gene knock-ins. Undoubtedly, CRISPR/Cas technology will boost the development of new plant breeding techniques tremendously.


2019 ◽  
Vol 20 (16) ◽  
pp. 4045 ◽  
Author(s):  
Ali Razzaq ◽  
Fozia Saleem ◽  
Mehak Kanwal ◽  
Ghulam Mustafa ◽  
Sumaira Yousaf ◽  
...  

Increasing agricultural productivity via modern breeding strategies is of prime interest to attain global food security. An array of biotic and abiotic stressors affect productivity as well as the quality of crop plants, and it is a primary need to develop crops with improved adaptability, high productivity, and resilience against these biotic/abiotic stressors. Conventional approaches to genetic engineering involve tedious procedures. State-of-the-art OMICS approaches reinforced with next-generation sequencing and the latest developments in genome editing tools have paved the way for targeted mutagenesis, opening new horizons for precise genome engineering. Various genome editing tools such as transcription activator-like effector nucleases (TALENs), zinc-finger nucleases (ZFNs), and meganucleases (MNs) have enabled plant scientists to manipulate desired genes in crop plants. However, these approaches are expensive and laborious involving complex procedures for successful editing. Conversely, CRISPR/Cas9 is an entrancing, easy-to-design, cost-effective, and versatile tool for precise and efficient plant genome editing. In recent years, the CRISPR/Cas9 system has emerged as a powerful tool for targeted mutagenesis, including single base substitution, multiplex gene editing, gene knockouts, and regulation of gene transcription in plants. Thus, CRISPR/Cas9-based genome editing has demonstrated great potential for crop improvement but regulation of genome-edited crops is still in its infancy. Here, we extensively reviewed the availability of CRISPR/Cas9 genome editing tools for plant biotechnologists to target desired genes and its vast applications in crop breeding research.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mohamed Abdelrahman ◽  
Zheng Wei ◽  
Jai S. Rohila ◽  
Kaijun Zhao

Multiplex genome-editing (MGE) technologies are recently developed versatile bioengineering tools for modifying two or more specific DNA loci in a genome with high precision. These genome-editing tools have greatly increased the feasibility of introducing desired changes at multiple nucleotide levels into a target genome. In particular, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) [CRISPR/Cas] system-based MGE tools allow the simultaneous generation of direct mutations precisely at multiple loci in a gene or multiple genes. MGE is enhancing the field of plant molecular biology and providing capabilities for revolutionizing modern crop-breeding methods as it was virtually impossible to edit genomes so precisely at the single base-pair level with prior genome-editing tools, such as zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs). Recently, researchers have not only started using MGE tools to advance genome-editing applications in certain plant science fields but also have attempted to decipher and answer basic questions related to plant biology. In this review, we discuss the current progress that has been made toward the development and utilization of MGE tools with an emphasis on the improvements in plant biology after the discovery of CRISPR/Cas9. Furthermore, the most recent advancements involving CRISPR/Cas applications for editing multiple loci or genes are described. Finally, insights into the strengths and importance of MGE technology in advancing crop-improvement programs are presented.


Sign in / Sign up

Export Citation Format

Share Document