scholarly journals Arabidopsis Plastid-RNA Polymerase RPOTp Is Involved in Abiotic Stress Tolerance

Plants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 834
Author(s):  
Abel Lidón-Soto ◽  
Eva Núñez-Delegido ◽  
Iván Pastor-Martínez ◽  
Pedro Robles ◽  
Víctor Quesada

Plastid gene expression (PGE) must adequately respond to changes in both development and environmental cues. The transcriptional machinery of plastids in land plants is far more complex than that of prokaryotes. Two types of DNA-dependent RNA polymerases transcribe the plastid genome: a multimeric plastid-encoded polymerase (PEP), and a monomeric nuclear-encoded polymerase (NEP). A single NEP in monocots (RPOTp, RNA polymerase of the T3/T7 phage-type) and two NEPs in dicots (plastid-targeted RPOTp, and plastid- and mitochondrial-targeted RPOTmp) have been hitherto identified. To unravel the role of PGE in plant responses to abiotic stress, we investigated if Arabidopsis RPOTp could function in plant salt tolerance. To this end, we studied the sensitivity of T-DNA mutants scabra3-2 (sca3-2) and sca3-3, defective in the RPOTp gene, to salinity, osmotic stress and the phytohormone abscisic acid (ABA) required for plants to adapt to abiotic stress. sca3 mutants were hypersensitive to NaCl, mannitol and ABA during germination and seedling establishment. Later in development, sca3 plants displayed reduced sensitivity to salt stress. A gene ontology (GO) analysis of the nuclear genes differentially expressed in the sca3-2 mutant (301) revealed that many significantly enriched GO terms were related to chloroplast function, and also to the response to several abiotic stresses. By quantitative RT-PCR (qRT-PCR), we found that genes LHCB1 (LIGHT-HARVESTING CHLOROPHYLL a/b-BINDING1) and AOX1A (ALTERNATIVE OXIDASE 1A) were respectively down- and up-regulated in the Columbia-0 (Col-0) salt-stressed plants, which suggests the activation of plastid and mitochondria-to-nucleus retrograde signaling. The transcript levels of genes RPOTp, RPOTmp and RPOTm significantly increased in these salt-stressed seedlings, but this enhanced expression did not lead to the up-regulation of the plastid genes solely transcribed by NEP. Similar to salinity, carotenoid inhibitor norflurazon (NF) also enhanced the RPOTp transcript levels in Col-0 seedlings. This shows that besides salinity, inhibition of chloroplast biogenesis also induces RPOTp expression. Unlike salt and NF, the NEP genes were significantly down-regulated in the Col-0 seedlings grown in ABA-supplemented media. Together, our findings demonstrate that RPOTp functions in abiotic stress tolerance, and RPOTp is likely regulated positively by plastid-to-nucleus retrograde signaling, which is triggered when chloroplast functionality is perturbed by environmental stresses, e.g., salinity or NF. This suggests the existence of a compensatory mechanism, elicited by impaired chloroplast function. To our knowledge, this is the first study to suggest the role of a nuclear-encoded plastid-RNA polymerase in salt stress tolerance in plants.

Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 173
Author(s):  
Abeer F. Desouky ◽  
Ahmed H. Ahmed ◽  
Hartmut Stützel ◽  
Hans-Jörg Jacobsen ◽  
Yi-Chen Pao ◽  
...  

Pathogenesis-related (PR) proteins are known to play relevant roles in plant defense against biotic and abiotic stresses. In the present study, we characterize the response of transgenic faba bean (Vicia faba L.) plants encoding a PR10a gene from potato (Solanum tuberosum L.) to salinity and drought. The transgene was under the mannopine synthetase (pMAS) promoter. PR10a-overexpressing faba bean plants showed better growth than the wild-type plants after 14 days of drought stress and 30 days of salt stress under hydroponic growth conditions. After removing the stress, the PR10a-plants returned to a normal state, while the wild-type plants could not be restored. Most importantly, there was no phenotypic difference between transgenic and non-transgenic faba bean plants under well-watered conditions. Evaluation of physiological parameters during salt stress showed lower Na+-content in the leaves of the transgenic plants, which would reduce the toxic effect. In addition, PR10a-plants were able to maintain vegetative growth and experienced fewer photosystem changes under both stresses and a lower level of osmotic stress injury under salt stress compared to wild-type plants. Taken together, our findings suggest that the PR10a gene from potato plays an important role in abiotic stress tolerance, probably by activation of stress-related physiological processes.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 782
Author(s):  
Joon-Yung Cha ◽  
Sang-Ho Kang ◽  
Myung Geun Ji ◽  
Gyeong-Im Shin ◽  
Song Yi Jeong ◽  
...  

Humic acid (HA) is a principal component of humic substances, which make up the complex organic matter that broadly exists in soil environments. HA promotes plant development as well as stress tolerance, however the precise molecular mechanism for these is little known. Here we conducted transcriptome analysis to elucidate the molecular mechanisms by which HA enhances salt stress tolerance. Gene Ontology Enrichment Analysis pointed to the involvement of diverse abiotic stress-related genes encoding HEAT-SHOCK PROTEINs and redox proteins, which were up-regulated by HA regardless of salt stress. Genes related to biotic stress and secondary metabolic process were mainly down-regulated by HA. In addition, HA up-regulated genes encoding transcription factors (TFs) involved in plant development as well as abiotic stress tolerance, and down-regulated TF genes involved in secondary metabolic processes. Our transcriptome information provided here provides molecular evidences and improves our understanding of how HA confers tolerance to salinity stress in plants.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 623
Author(s):  
Sidra Habib ◽  
Yee Yee Lwin ◽  
Ning Li

Adverse environmental factors like salt stress, drought, and extreme temperatures, cause damage to plant growth, development, and crop yield. GRAS transcription factors (TFs) have numerous functions in biological processes. Some studies have reported that the GRAS protein family plays significant functions in plant growth and development under abiotic stresses. In this study, we demonstrated the functional characterization of a tomato SlGRAS10 gene under abiotic stresses such as salt stress and drought. Down-regulation of SlGRAS10 by RNA interference (RNAi) produced dwarf plants with smaller leaves, internode lengths, and enhanced flavonoid accumulation. We studied the effects of abiotic stresses on RNAi and wild-type (WT) plants. Moreover, SlGRAS10-RNAi plants were more tolerant to abiotic stresses (salt, drought, and Abscisic acid) than the WT plants. Down-regulation of SlGRAS10 significantly enhanced the expressions of catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) to reduce the effects of reactive oxygen species (ROS) such as O2− and H2O2. Malondialdehyde (MDA) and proline contents were remarkably high in SlGRAS10-RNAi plants. Furthermore, the expression levels of chlorophyll biosynthesis, flavonoid biosynthesis, and stress-related genes were also enhanced under abiotic stress conditions. Collectively, our conclusions emphasized the significant function of SlGRAS10 as a stress tolerate transcription factor in a certain variety of abiotic stress tolerance by enhancing osmotic potential, flavonoid biosynthesis, and ROS scavenging system in the tomato plant.


Author(s):  
Gábor Feigl ◽  
Árpád Molnár ◽  
Dóra Oláh ◽  
Zsuzsanna Kolbert

Author(s):  
Muhammad Naeem ◽  
Misbah Amir ◽  
Hamid Manzoor ◽  
Sumaira Rasul ◽  
Habib-ur-Rehman Athar

Sign in / Sign up

Export Citation Format

Share Document