scholarly journals Sowing Date Affects the Timing and Duration of Key Chickpea (Cicer arietinum L.) Growth Phases

Plants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1257
Author(s):  
Mark F. Richards ◽  
Aaron L. Preston ◽  
Tony Napier ◽  
Leigh Jenkins ◽  
Lancelot Maphosa

Chickpea is the main legume rotation crop within farming systems in northern New South Wales (NSW), Australia, and is grown mainly under rainfed conditions. Recent expansion of chickpea growing areas in southern and central western NSW expose them to abiotic stresses; however, knowledge about how these stresses affect overall crop development is limited. This study aimed to examine the influence of sowing time on the timing and duration of key chickpea phenological growth phases in southern and central western environments of NSW. Experiments were conducted over two years in southern NSW (Leeton, Wagga Wagga and Yanco (one year)) and central western NSW (Trangie) to identify phenology responses. Climatic, phenology and experimental site data was recorded, and the duration of growth phases and growing degree days calculated. Early sowing (mid-April) generally delayed flowering, extending the crop’s vegetative period, and the progressive delay in sowing resulted in shorter vegetative and podding growth phases. All genotypes showed photoperiod sensitivity, and the mean daily temperature at sowing influenced time to emergence and to some extent crop establishment. This study concludes that environmental factors such as temperature, moisture availability and day length are the main drivers of phenological development in chickpea.

Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 160
Author(s):  
Mark F. Richards ◽  
Lancelot Maphosa ◽  
Aaron L. Preston

Chickpea growth, development and grain yield are affected by a range of climatic and environmental factors. Experiments were conducted across four sowing dates from mid-April to the end of May, over two years at Trangie in central western New South Wales (NSW), and Leeton, Wagga Wagga and Yanco (one year) in southern NSW, to examine the influence of sowing time on biomass accumulation, grain yield and plant yield components. Climatic and experimental location data were recorded during the growing seasons. Early sowing (mid-April) resulted in taller plants, higher bottom and top pod heights, fewer pods, more unfilled pods and greater biomass accumulation, but low harvest index due to reduced grain yield compared with late sowing (end of May). Grain number was positively correlated with grain yield and was the main yield component accounting for most of the variation in yield. There was largely a positive correlation between biomass and yield, especially with delayed sowing except for Leeton experiments. This study concludes that sowing around the end of April in central western NSW and mid-May in southern NSW is conducive to higher grain yield as it minimises exposure to abiotic stresses at critical growth periods and allows efficient conversion of biomass to grain yield.


1997 ◽  
Vol 48 (4) ◽  
pp. 433 ◽  
Author(s):  
L. D. J. Penrose

This study examined factors that determine ear emergence in winter wheats grown at Temora, New South Wales. Three development factors were considered: degree of winter habit, response to photoperiod, and intrinsic earliness. The effect of winter habit was first examined by using 3 pairs of related wheats that differed for spring–winter habit. Wheats were sown under irrigation from mid February to June, for up to 4 consecutive years. Ear emergence was recorded in days of the year for ease of field interpretation, and in photo-thermal time to measure delay in development. Winter habit was found to delay ear emergence throughout this sowing range. Ear emergence was then studied in 23 winter wheats that as a group encompassed a broad range for each of the 3 development factors, and these winter wheats were grouped on the basis of combinations of development factors. Differences in ear emergence between these groups guided the construction and testing of regression equations that described ear emergence as a function of sowing date and of the 3 development factors. Many combinations of factors were associated with the time of ear emergence (i.e. 1 October) at Temora that best optimises the balance between frost risk and yield potential. Combinations of development factors also influenced the flexibility of sowing time for winter wheats grown at Temora. These findings may assist the breeding of new winter wheats that can be sown over a longer period than current winter cultivars.


2010 ◽  
Vol 61 (7) ◽  
pp. 554 ◽  
Author(s):  
Guangdi D. Li ◽  
Zhongnan Nie ◽  
Amanda Bonython ◽  
Suzanne P. Boschma ◽  
Richard C. Hayes ◽  
...  

The comparative herbage production and persistence of 7 chicory cultivars and 14 accessions collected from diverse regions of the world were evaluated over 3 years in 5 agro-ecological environments across New South Wales (NSW), Victoria (Vic.) and South Australia (SA). Results showed that all cultivars had higher herbage yields than the accessions, but varied greatly among sites. Averaged across all cultivars, total herbage yields were up to 24.6 t DM/ha over 3 years at the Hamilton, Vic. site, but as low as 6.9 and 5.7 t DM/ha at the Wagga Wagga and Bookham, NSW sites, respectively, where chicory only persisted for 2 years. In contrast, the average herbage yield of all accessions was only one-half of that produced by the cultivars at the Hamilton site and about one-third of that at the other 4 sites. All cultivars and accessions persisted well under the favourable climate conditions experienced at the Hamilton site. In contrast, severe drought in 2006 resulted in the death of chicory swards at the Wagga Wagga and Bookham sites, and substantial declines in persistence at the Manilla, NSW and Willalooka, SA sites. Nevertheless, accessions collected from Australia and Asia were more persistent than some of the cultivars and may provide opportunities to select genotypes better adapted to intermittently dry mixed farming systems in south-eastern Australia. Our findings indicated that the current cultivars were best suited to sites similar to the Hamilton site in the winter-dominant, higher rainfall zone of south-eastern Australia. Under these conditions chicory was likely to be productive and persistent for 4 years or longer. In the drier mixed farming zone, chicory may be more suitable in shorter (2–3-year) pasture phases. Further research is required to identify those factors contributing to poor persistence.


1994 ◽  
Vol 34 (8) ◽  
pp. 1137 ◽  
Author(s):  
DP Heenan

Cultivars of lupin and field pea were grown at different times over 4 years on a red earth at Wagga Wagga, New South Wales, to assess the influence of sowing time on growth and production from each crop. The cultivars of field pea (Pisum sativum) included Dinkum, Derrimut, Dunn, and Maitland; lupins used were Lupinus angustifolius cvv. Danja, Gungurru, and Geebung, and either the L. angustifolius line 75A/330 (1989-90) or L. albus cv. Ultra (1991-92). When autumn rain was sufficient to allow sowing, highest yield and dry matter production of lupin were gained by sowing from late April to 19 May. Yields declined with later sowing, though high spring-summer rainfall in 1992 reversed the decline. There was little difference between Danja, Gungurru, and Geebung, but these were usually higher yielding than the semi-dwarf 75Al330 when sown early. However, Ultra produced higher yields than the L. angustifolius cultivars in 1991 and 1992, particularly under high rainfall conditions. Early-sown crops (late April-mid May) of field peas were often severely infected with black spot blight and, in 1 year, with sclerotinia. In 1992 these diseases devastated all cultivars when sown on 1 May. Sowing later markedly reduced disease infection but also reduced grain yields and dry matter when sown after late June. The semi-leafless, semi-dwarf cultivar Dinkum was usually the lowest yielding and displayed the highest incidence of black spot blight.


2020 ◽  
Vol 71 (2) ◽  
pp. 147 ◽  
Author(s):  
Bill K. Manning ◽  
Kedar N. Adhikari ◽  
Richard Trethowan

Faba bean (Vicia faba L.) is a significant rotation crop in northern New South Wales. However, drought limits yield, and the reproductive structures of faba bean are sensitive to high temperatures and frost. Although early sowing can avoid terminal heat and drought stresses, the accumulation of large amounts of vegetative biomass may result in low yield. Experiments were conducted over 2 years at Breeza and Narrabri in north-western New South Wales, Australia, to examine the influence of sowing time on yield, yield components, maturity, pod distribution and biomass production. The second sowing date (early May) produced the highest yield and seed weight at both sites. However, the third sowing date (late May) produced greater yield than the first (mid-April) at Breeza, and this was associated with very high final biomass. At Narrabri, the first and third sowing dates produced similar low yield. Poorer yield in late-sown materials was likely due to terminal stress, and the impact will be greater in less favourable locations and seasons. The poorer yield of faba bean from the first sowing date was likely driven by excessive biomass accumulation, an effect that would be exacerbated in favourable seasons and locations. The lower seed weight observed at Breeza was possibly a result of greater intra-plant competition. The earliest maturing genotype had the highest yield and seed weight at both sites, indicating the importance of rapid pod growth and senescence in these warm and often water-limited environments. Dry matter production was greater with early sowing, higher moisture and warmer temperatures. In contrast to other studies, a weak relationship between biomass and yield was observed.


1993 ◽  
Vol 33 (5) ◽  
pp. 601 ◽  
Author(s):  
LDJ Penrose

The effect on yield of early sowing of wheat, and of sowing wheats with winter habit, was assessed from routine trials from 29 sites in south and central New South Wales from 1981 to 1990. Early-sown trials were largely sown from mid to late April and conventionally late trials from mid to late May. Entries in early trials consisted of winter wheats or photoperiod-sensitive spring wheats, while photoperiod-insensitive spring wheats were sown in late trials. There was a gradual change in trial entries over the period of study. Although more variable than the late-sown trials, the early-sown trials had high yields over a wider range of sowing times and displayed less risk of frost damage. On average, winter wheats had a 6% yield advantage over late-maturing spring wheats in early-sown trials. Trials yielded 15% more when sown early than late. In comparison with quick-maturing spring wheats, winter wheats did not appear to suffer a large yield penalty when sown late. Yield of early-sown trials declined with sowing before or after the optimum sowing time of late April. There was a large reduction in yield with sowings earlier than 20 April. Yield of spring wheats declined from early May almost linearly with delay in sowing date.


2019 ◽  
Vol 62 (1) ◽  
Author(s):  
Soon Ae Sim ◽  
Su Gyeong Woo ◽  
Dae Yeon Hwang ◽  
Jin-Hong Kim ◽  
Seung Sik Lee ◽  
...  

Abstract Flowering at the right time is essential for maximum reproductive fitness. In Arabidopsis thaliana, the CONSTANS (CO) protein facilitates the transition from the vegetative phase to the reproductive phase under long-day conditions. The formation of heterodimeric complexes between CO and DNA binding domain-containing transcription factors is important for the induction of day length-dependent flowering. Here, we report a myb-like helix turn helix (HTH) transcriptional regulator family protein as a new modulator of floral transition, which we have named FLOWERING HTH1 (FHTH1). We isolated FHTH1 as a CO-interacting protein by a yeast two-hybrid screen using an Arabidopsis transcription factor library. Our analysis showed that FHTH1 presented in the nucleus and the FHTH1-CO complex was formed in the same subcellular location. We also observed the expression of a FHTH1:GUS construct in the leaf vasculature, where CO exists. Transgenic plants overexpressing FHTH1 fused with the plant-specific repression domain SRDX showed a delayed flowering phenotype in long days, resembling the phenotype of the co mutant. Our results suggest that FHTH1 may contribute to CO-mediated photoperiodic flowering regulation.


2007 ◽  
Vol 34 (2) ◽  
pp. 94 ◽  
Author(s):  
Rodney P. Kavanagh ◽  
Matthew A. Stanton ◽  
Traecey E. Brassil

The koala (Phascolarctos cinereus) is a charismatic, high-profile species whose conservation needs are commonly perceived to be incompatible with logging. However, koala biology and the results of chronosequence studies elsewhere suggest that this species may tolerate a degree of habitat alteration caused by logging. In this study, 30 koalas, five in each of six areas available for logging within a mixed white cypress pine (Callitris glaucophylla)–Eucalyptus forest in north-western New South Wales, were radio-tracked for one year during 1997–1998 to determine their movements, home-range sizes and tree preferences. Five months after the study began, three of these areas were logged selectively for sawlogs and thinnings of the white cypress pine, a tree that is important to koalas for daytime shelter. This removed about one-quarter of the stand basal area, but the eucalypt component was unaffected. The remaining three areas were left undisturbed as controls. Radio-tracking continued in all six areas for another seven months. Koalas continued to occupy all or part of their previous home-ranges after selective logging, and home-range sizes remained similar between logged and unlogged areas. Home-ranges for both sexes overlapped and were ~12 ha for males and 9 ha for females. Koala survival and the proportions of breeding females were similar in logged and unlogged areas. The principal food trees of the koala were red gums, mainly Eucalyptus blakelyi and E. chloroclada, and the pilliga box (E. pilligaensis), none of which were logged in this study. These results suggest that selective logging for white cypress pine does not appear to adversely affect koala populations and that koalas may not be as sensitive to logging as previously thought. Further work is required to determine thresholds in the level of retention of koala food trees in logging operations.


Sign in / Sign up

Export Citation Format

Share Document