scholarly journals Over-Expression of a Melon Y3SK2-Type LEA Gene Confers Drought and Salt Tolerance in Transgenic Tobacco Plants

Plants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1749
Author(s):  
Samuel Aduse Poku ◽  
Peter Nkachukwu Chukwurah ◽  
Htut Htet Aung ◽  
Ikuo Nakamura

Climate change, with its attendant negative effects, is expected to hamper agricultural production in the coming years. To counteract these negative effects, breeding of environmentally resilient plants via conventional means and genetic engineering is necessary. Stress defense genes are valuable tools by which this can be achieved. Here we report the successful cloning and functional characterization of a melon Y3SK2-type dehydrin gene, designated as CmLEA-S. We generated CmLEA-S overexpressing transgenic tobacco lines and performed in vitro and in vivo drought and salt stress analyses. Seeds of transgenic tobacco plants grown on 10% polyethylene glycol (PEG) showed significantly higher germination rates relative to wild-type seeds. In the same way, transgenic seeds grown on 150 mM sodium chloride (NaCl) recorded significantly higher germination percentages compared with wild-type plants. The fresh weights and root lengths of young transgenic plants subjected to drought stress were significantly higher than that of wild-type plants. Similarly, the fresh weights and root lengths of transgenic seedlings subjected to salt stress treatments were also significantly higher than wild-type plants. Moreover, transgenic plants subjected to drought and salt stresses in vivo showed fewer signs of wilting and chlorosis, respectively. Biochemical assays revealed that transgenic plants accumulated more proline and less malondialdehyde (MDA) compared with wild-type plants under both drought and salt stress conditions. Finally, the enzymatic activities of ascorbate peroxidase (APX) and catalase (CAT) were enhanced in drought- and salt-stressed transgenic lines. These results suggest that the CmLEA-S gene could be used as a potential candidate gene for crop improvement.

Author(s):  
Ai-Hua Wang ◽  
Lan Yang ◽  
Xin-Zhuan Yao ◽  
Xiao-Peng Wen

AbstractPhosphoethanolamine N-methyltransferase (PEAMTase) catalyzes the methylation of phosphoethanolamine to produce phosphocholine and plays an important role in the abiotic stress response. Although the PEAMT genes has been isolated from many species other than pitaya, its role in the drought stress response has not yet been fully elucidated. In the present study, we isolated a 1485 bp cDNA fragment of HpPEAMT from pitaya (Hylocereus polyrhizus). Phylogenetic analysis showed that, during its evolution, HpPEAMT has shown a high degree of amino acid sequence similarity with the orthologous genes in Chenopodiaceae species. To further investigate the function of HpPEAMT, we generated transgenic tobacco plants overexpressing HpPEAMT, and the transgenic plants accumulated significantly more glycine betaine (GB) than did the wild type (WT). Drought tolerance trials indicated that, compared with those of the wild-type (WT) plants, the roots of the transgenic plants showed higher drought tolerance ability and exhibited improved drought tolerance. Further analysis revealed that overexpression of HpPEAM in Nicotiana tabacum resulted in upregulation of transcript levels of GB biosynthesis-related genes (NiBADH, NiCMO and NiSDC) in the leaves. Furthermore, compared with the wild-type plants, the transgenic tobacco plants displayed a significantly lower malondialdehyde (MDA) accumulation and higher activities of the superoxide dismutase (SOD) and peroxidase (POD) antioxidant enzymes under drought stress. Taken together, our results suggested that HpPEAMT enhanced the drought tolerance of transgenic tobacco.


2020 ◽  
Vol 21 (4) ◽  
pp. 1323 ◽  
Author(s):  
Wei Li ◽  
Changxi Dang ◽  
Yuxiu Ye ◽  
Zunxin Wang ◽  
Laibao Hu ◽  
...  

In plants, auxin/indoleacetic acid (Aux/IAA) proteins are transcriptional regulators that regulate developmental process and responses to phytohormones and stress treatments. However, the regulatory functions of the Vitis vinifera L. (grapevine) Aux/IAA transcription factor gene VvIAA18 have not been reported. In this study, the VvIAA18 gene was successfully cloned from grapevine. Subcellular localization analysis in onion epidermal cells indicated that VvIAA18 was localized to the nucleus. Expression analysis in yeast showed that the full length of VvIAA18 exhibited transcriptional activation. Salt tolerance in transgenic tobacco plants and Escherichia. coli was significantly enhanced by VvIAA18 overexpression. Real-time quantitative PCR analysis showed that overexpression of VvIAA18 up-regulated the salt stress-responsive genes, including pyrroline-5-carboxylate synthase (NtP5CS), late embryogenesis abundant protein (NtLEA5), superoxide dismutase (NtSOD), and peroxidase (NtPOD) genes, under salt stress. Enzymatic analyses found that the transgenic plants had higher SOD and POD activities under salt stress. Meanwhile, component analysis showed that the content of proline in transgenic plants increased significantly, while the content of hydrogen peroxide (H2O2) and malondialdehyde (MDA) decreased significantly. Based on the above results, the VvIAA18 gene is related to improving the salt tolerance of transgenic tobacco plants. The VvIAA18 gene has the potential to be applied to enhance plant tolerance to abiotic stress.


2009 ◽  
Vol 46 (2) ◽  
pp. 63-75 ◽  
Author(s):  
Roya Razavizadeh ◽  
Ali Ehsanpour

Effects of salt stress on proline content, expression of delta-1-pyrroline-5-carboxylate synthetase, and activities of catalase and ascorbate peroxidase in transgenic tobacco plantsIn arid and semiarid regions, soil salinity limits crop production. Proline accumulation in transgenic plants results in increased stress tolerance, but the underlying mechanism was unclear. To elucidate it, effects of salt stress on the expression pattern of Δ1-pyrroline-5-carboxylate synthetase (P5CS), proline content, catalase (CAT), and ascorbate peroxidase (APX) activities were analyzed in transgenic tobacco (Nicotiana tabacumcv. Wisconsin). Transgenic tobacco plants containing CaMV 35S promoter and theP5CSgene from moth bean (Vigna aconitifolia), linked to theNPTIIgene, were culturedin vitrowith or without 300 mM NaCl. The expression pattern ofP5CSwas evaluated using semiquantitative RT-PCR (reverse transcription-polymerase chain reaction). Time-course experiments showed an increase in proline content after 4 h of the treatment. The level ofP5CStranscripts was increased significantly in leaves and roots of transgenic plants after 24 and 48 h of treatment. This rise in transcripts was concomitant with the highest increase in proline content. In addition, CAT and APX activities increased under salt stress, and their highest activities were observed after 24 and 48 h of NaCl treatment. These results suggest thatP5CSis an inducible gene regulating the activities of CAT and APX and the accumulation of proline in plants subjected to salt stress.


PLoS ONE ◽  
2011 ◽  
Vol 6 (8) ◽  
pp. e23776 ◽  
Author(s):  
Kevin Begcy ◽  
Eduardo D. Mariano ◽  
Lucia Mattiello ◽  
Alessandra V. Nunes ◽  
Paulo Mazzafera ◽  
...  

2021 ◽  
Vol 5 (1) ◽  
pp. 168-182
Author(s):  
Hatice DAGHAN ◽  
Veli UYGUR ◽  
Abdullah EREN

Genetiği değiştirilmiş bitkiler, kurşunun (Pb) kökten yer üstü kısımlarına translokasyonunu geliştirmek için büyük bir potansiyele sahip olabilir. Transgenik olmayan ( Nicotiana tabacum L. cv. Petit Havana SR1) ve transgenik (p-cV-ChMTII GFP) tütün bitkileri tarafından Pb alımının sağlanması araştırmak için Çin hamsteri metalotiyonin II gezen bir kap deneyi yapıldı . Transgenik ve transgenik olmayan tütün bitkileri, 0, 1000, 2500, 5000 mg Pb kg- 1 ile Pb (NO 3 ) 2 olarak işlenmiş topraklarda yetiştirildi. Kelimede bir büyüme bölümünde 6 hafta boyunca çiçeklenme aşamasına kadar.Bitkilerin büyümesi, klorofil içeriği, mineral besin elementleri ve düşük glutatyon (GSH) bezleri, bitkilerin Pb alım potansiyeli ile birlikte incelenmiştir. Hem transgenik hem de transgenik olmayan bitkiler için Pb uygulamasındaki artışa bağlı olarak yer üstü biyokütle çevrildi aşamalı bir düşüş gözlendi. Yaprak besinlerinin bulaştığı, aşırı Pb işlemlerinden olumsuz etkilenmiştir, bunlardan en büyük düşüşü. Sürgün Pb yüksek derecesi 76.0 mg kg kadar ulaşan -1 transgenik ve 70.9 mg kg -1 transgenik olmayan bitkilerde. Pb alımı, p-cV-ChMTII GFP'nin tütün bitkisine aktarılmasıyla iyileştirildi; ancak, Pb fitoremediasyonunda yeterli değildi. 


2004 ◽  
Vol 84 (3) ◽  
pp. 785-790 ◽  
Author(s):  
Jianhong Yao, Xiuyun Zhao ◽  
Huaxiong Qi, Bingliang Wan ◽  
Fei Chen, Xiaofen Sun ◽  
Shanqian Yu ◽  
Kexuan Tang

Tobacco leaf discs were transformed with a plasmid, pBIAHA, containing the selectable marker neomycin phosphotransferase gene (nptII) and an Arisaema heterophyllum agglutinin gene (aha) via Agrobacterium tumefaciens-mediated transformation. Thirty-two independent transgenic tobacco plants were regenerated. PCR and Southern blot analyses confirmed that multiple copies of the aha gene had integrated into the plant genome. Northern blot analysis revealed that the aha gene was expressed at various levels in the transgenic plants. Insect bioassay test showed that transgenic plants expressing multiple copies of the aha gene reduced the rate of population increase of the peach potato aphid (Myzus persicae Sulzer). This is the first report that transgenic tobacco plants expressing the aha gene display enhanced resistance to aphids. Key words: Insect bioassay, Arisaema heterophyllum agglutinin, transformation, transgenic tobacco, peach potato aphid (Myzus persicae Sulzer)


Biomolecules ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 806
Author(s):  
Eun Jin Cho ◽  
Quynh Anh Nguyen ◽  
Yoon Gyo Lee ◽  
Younho Song ◽  
Bok Jae Park ◽  
...  

Here, we report an increase in biomass yield and saccharification in transgenic tobacco plants (Nicotiana tabacum L.) overexpressing thermostable β-glucosidase from Thermotoga maritima, BglB, targeted to the chloroplasts and vacuoles. The transgenic tobacco plants showed phenotypic characteristics that were significantly different from those of the wild-type plants. The biomass yield and life cycle (from germination to flowering and harvest) of the transgenic tobacco plants overexpressing BglB were 52% higher and 36% shorter than those of the wild-type tobacco plants, respectively, indicating a change in the genome transcription levels in the transgenic tobacco plants. Saccharification in biomass samples from the transgenic tobacco plants was 92% higher than that in biomass samples from the wild-type tobacco plants. The transgenic tobacco plants required a total investment (US$/year) corresponding to 52.9% of that required for the wild-type tobacco plants, but the total biomass yield (kg/year) of the transgenic tobacco plants was 43% higher than that of the wild-type tobacco plants. This approach could be applied to other plants to increase biomass yields and overproduce β-glucosidase for lignocellulose conversion.


Sign in / Sign up

Export Citation Format

Share Document