scholarly journals Tannic-Acid-Cross-Linked and TiO2-Nanoparticle-Reinforced Chitosan-Based Nanocomposite Film

Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 228
Author(s):  
Swarup Roy ◽  
Lindong Zhai ◽  
Hyun Chan Kim ◽  
Duc Hoa Pham ◽  
Hussein Alrobei ◽  
...  

A chitosan-based nanocomposite film with tannic acid (TA) as a cross-linker and titanium dioxide nanoparticles (TiO2) as a reinforcing agent was developed with a solution casting technique. TA and TiO2 are biocompatible with chitosan, and this paper studied the synergistic effect of the cross-linker and the reinforcing agent. The addition of TA enhanced the ultraviolet blocking and mechanical properties of the chitosan-based nanocomposite film. The reinforcement of TiO2 in chitosan/TA further improved the nanocomposite film’s mechanical properties compared to the neat chitosan or chitosan/TA film. The thermal stability of the chitosan-based nanocomposite film was slightly enhanced, whereas the swelling ratio decreased. Interestingly, its water vapor barrier property was also significantly increased. The developed chitosan-based nanocomposite film showed potent antioxidant activity, and it is promising for active food packaging.

Khazanah ◽  
2020 ◽  
Vol 12 (2) ◽  
Author(s):  
Nadya Fitriani Pitaloka ◽  
◽  
Ardilla Sriwijayanti ◽  
Santi Anisa ◽  
Irne Dyah Ayu Wijayanti ◽  
...  

Food packaging materials derived from fossil fuels are single-use products that harm the health of living things when disposed of by releasing toxic byproducts. Many communities are starting to be more environmentally friendly by using biopolymers. However, some biopolymers do not have antibacterial properties, thus shortening the food’s shelf life and not applicable in food packaging. Therefore, the purpose of this work is to develop a biodegradable and antimicrobial food packaging from sugarcane bagasse and clay that degrades over time without compromising the food’s shelf life. Cellulose acetate butyrate (cab) was prepared in an amimcl ionic liquid system from sugarcane bagasse. Then the cab was plasticized using peg, resulting a film. Besides, montmorillonite (mmt) clay was modified with aryl ammonium cations using a cation exchange technique to form bmmt. The nanocomposite film was prepared by mixing the plasticized cab and bmmt, then heated at 50c to evaporate the solution. The nanocomposite film was obtained as a prototype of food packaging. Several tests were conducted including mechanical properties, water vapor permeability (wvp), antimicrobial and toxicity test. Based on research by saha et.al, 2008, the nanocomposite film with the cag, peg and bmmt 100:20:3 composition gave the best mechanical properties because of the agglomeration of bmmt. Also, the nanocomposite film had promising wvp properties as a plastic because the clay layers reduced the water vapor diffusion across the polymer matrix. The toxicity test showed that this nanocomposite film was compatible in human blood. Lastly, this nanocomposite film has antibacterial activity against b. Subtilis and p. Cepacia because of the bmmt presence. In conclusion, the nanocomposite film from sugarcane bagasse and clay containing cag, peg and bmmt 100:20:3 is a promising material for a biodegradable and antimicrobial food packaging, because it has sufficient mechanical properties, antibacterial activity, low wvp and is non-toxic.


2018 ◽  
Vol 25 (5) ◽  
pp. 975-982 ◽  
Author(s):  
Alireza Khoshkbar Sadeghi ◽  
Maryam Farbodi

AbstractIn the present research, polyaniline is used as a conducting polymer and polyvinyl alcohol is also used as a biopolymer, because of its mechanical properties and suitable processability. Also, silver nanoparticles are considered as a reinforcing agent of thermal stability, mechanical and antibacterial properties to prepare polyaniline-polyvinyl alcohol-silver nanocomposite. The synthesis of polyaniline-polyvinyl alcohol composite and polyaniline-polyvinyl alcohol-silver nanocomposite is performed through addition of polyaniline and silver in polyvinyl alcohol solution. In order to review thermal, mechanical and antibacterial properties of synthesized composite and nanocomposites, components with different weight rates are used. The obtained results from thermogravimetric analysis (TGA) tests also indicate promotion of thermal stability of polyaniline-polyvinyl alcohol-silver nanocomposite compared with pure polyvinyl alcohol in temperatures above 400°C. The results of Fourier-transform infrared (FTIR) spectroscopy revealed the presence of polyaniline, polyvinyl alcohol and silver in the structure of polyaniline-polyvinyl alcohol-silver triple nanocomposite film. The obtained results from a review of antibacterial properties showed that polyaniline-polyvinyl alcohol-silver nanocomposites have antibacterial effects on two different types of Gram-positive and Gram-negative bacteria. The obtained results from a review of mechanical properties of nanocomposites showed that the greatest value of tensile strength (13.8 MPa) belonged to polyaniline-polyvinyl alcohol-silver (88%/9%/3% w/w) nanocomposites. Therefore, this is determined as an optimal triple nanocomposite. In addition, scanning electron microscopy (SEM) coupled with an energy dispersive X-ray (EDX) system was used to characterize the composition and structure of polyaniline-polyvinyl alcohol-silver nanocomposite film.


Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3570
Author(s):  
Nur Arfa Yanti ◽  
Sitti Wirdhana Ahmad ◽  
La Ode Ahmad Nur Ramadhan ◽  
Jamili ◽  
Muzuni ◽  
...  

Bacterial cellulose (BC) based on sago liquid waste has been developed to be used as food packaging. This study investigated the physicochemical and mechanical properties of modified BC film and its application as food packaging. The modified BC film performed carboxymethyl cellulose (CMC) as a stabilizer and glycerol as a plasticizer. Films were prepared by casting technique using BC as the primary material and composites with various concentrations of CMC and glycerol (0.5%, 1%, and 1.5%, v/v). BC film was applied as the packaging of meat sausage, and the quality of meat sausage was measured based on weight loss, moisture content, pH, protein content, and total microbial count. The addition of CMC and glycerol influences the physical and mechanical properties of BC composites film. The best mechanical properties of edible BC film were collected by adding 1% CMC and 1% glycerol with a tensile strength of 17.47 MPa, elongation at a break of 25.60%, and Young’s modulus of 6.54 GPa. FTIR analysis showed the characteristic bands of BC, and the addition of CMC and glycerol slightly changed the FTIR spectrum of the composites. The utilization of modified BC-based sago liquid waste film as the packaging of meat sausage could maintain sausage quality during 6 days of storage at room temperature. Therefore, edible BC film has the potential to be used as food packaging.


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3652
Author(s):  
Mohammad Nahid Siddiqui ◽  
Halim Hamid Redhwi ◽  
Ioannis Tsagkalias ◽  
Evangelia C. Vouvoudi ◽  
Dimitris S. Achilias

The new trend in food packaging films is to use biodegradable or bio-based polymers, such as poly(lactic acid), PLA with additives such as thymol, carvacrol, limonene or cinnamaldehyde coming from natural resources (i.e., thyme, oregano, citrus fruits and cinnamon) in order to extent foodstuff shelf-life and improve consumers’ safety. Single, triple and quadruple blends of these active compounds in PLA were prepared and studied using the solvent-casting technique. The successful incorporation of the active ingredients into the polymer matrix was verified by FTIR spectroscopy. XRD and DSC data revealed that the crystallinity of PLA was not significantly affected. However, the Tg of the polymer decreased, verifying the plasticization effect of all additives. Multicomponent mixtures resulted in more intense plasticization. Cinnamaldehyde was found to play a catalytic role in the thermal degradation of PLA shifting curves to slightly lower temperatures. Release of thymol or carvacrol from the composites takes place at low rates at temperatures below 100 °C. A combined diffusion-model was found to simulate the experimental release profiles very well. Higher antioxidant activity was noticed when carvacrol was added, followed by thymol and then cinnamaldehyde and limonene. From the triple-component composites, higher antioxidant activity measured in the materials with thymol, carvacrol and cinnamaldehyde.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 242
Author(s):  
M.D. Hazrol ◽  
S.M. Sapuan ◽  
E.S. Zainudin ◽  
M.Y.M. Zuhri ◽  
N.I. Abdul Wahab

The research included corn starch (CS) films using sorbitol (S), glycerol (G), and their combination (SG) as plasticizers at 30, 45, and 60 wt %, with a traditional solution casting technique. The introduction of plasticizer to CS film-forming solutions led to solving the fragility and brittleness of CS films. The increased concentration of plasticizers contributed to an improvement in film thickness, weight, and humidity. Conversely, plasticized films reduced their density and water absorption, with increasing plasticizer concentrations. The increase in the amount of the plasticizer from 30 to 60% showed a lower impact on the moisture content and water absorption of S-plasticized films. The S30-plasticized films also showed outstanding mechanical properties with 13.62 MPa and 495.97 MPa, for tensile stress and tensile modulus, respectively. Glycerol and-sorbitol/glycerol plasticizer (G and SG) films showed higher moisture content and water absorption relative to S-plasticized films. This study has shown that the amount and type of plasticizers significantly affect the appearances, physical, morphological, and mechanical properties of the corn starch biopolymer plastic.


RSC Advances ◽  
2016 ◽  
Vol 6 (41) ◽  
pp. 34188-34197 ◽  
Author(s):  
R. Atif ◽  
I. Shyha ◽  
F. Inam

Multi-layered graphene (MLG)–epoxy nanocomposites of three different types were produced using the solution casting technique with MLG dispersed in three different mediums; acetone (MA), an epoxy (ME), and a hardener (MH).


Polimery ◽  
2021 ◽  
Vol 66 (2) ◽  
Author(s):  
M. Zulham Efendi Sinaga ◽  
Saharman Gea ◽  
Cut Fatimah Zuhra ◽  
Yuan Alfinsyah Sihombing ◽  
Emma Zaidar ◽  
...  

Gracilaria sp. is well known as one kind of species of red algae. The major component of polysaccharide in this alga is agar that mostly used for making thin film. In this study, the Gracilaria sp.-based thin film had been prepared using two plasticizers (glycerol and sorbitol, 0.1, 0.2, and 0.3 wt %), and chitosan (1, 2, and 3 wt %). The FT-IR analysis confirmed the interaction that happened among the component of the mixture of Gracilaria sp., plasticizers, and chitosan was based on hydrogen bonding due to the presence of -OH and -NH2 groups. The plasticizers and chitosan concentration have significant role to the mechanical properties of Gracilaria sp.-based thin film. The optimum concentration of plasticizers and chitosan based on mechanical testing result was found at 0.2 and 3.0 wt %, respectively. At those concentrations, the thin film that prepared with sorbitol showed the highest mechanical properties. Other characterizations, i.e. TGA (Thermogravimetric Analysis), SEM (Scanning Electron Microscopy), and WVP (Water Vapor Permeability) also brought the same result. The antimicrobial properties of the as prepared thin film in the presence of chitosan on agar medium and as a packaging on selected bread showed the Gracilaria sp.-based thin films was able to inhibit the growth of microbes. This antimicrobial activity can be used to declare the potential of Gracilaria sp.-based thin film as a new active food packaging.


Sign in / Sign up

Export Citation Format

Share Document