scholarly journals Upgrading Argan Shell Wastes in Wood Plastic Composites with Biobased Polyethylene Matrix and Different Compatibilizers

Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 922
Author(s):  
Maria Jorda-Reolid ◽  
Jaume Gomez-Caturla ◽  
Juan Ivorra-Martinez ◽  
Pablo Marcelo Stefani ◽  
Sandra Rojas-Lema ◽  
...  

The present study reports on the development of wood plastic composites (WPC) based on micronized argan shell (MAS) as a filler and high-density polyethylene obtained from sugarcane (Bio-HDPE), following the principles proposed by the circular economy in which the aim is to achieve zero waste by the introduction of residues of argan as a filler. The blends were prepared by extrusion and injection molding processes. In order to improve compatibility between the argan particles and the green polyolefin, different compatibilizers and additional filler were used, namely polyethylene grafted maleic anhydride (PE-g-MA 3 wt.-%), maleinized linseed oil (MLO 7.5 phr), halloysite nanotubes (HNTs 7.5 phr), and a combination of MLO and HNTs (3.75 phr each). The mechanical, morphological, thermal, thermomechanical, colorimetric, and wettability properties of each blend were analyzed. The results show that MAS acts as a reinforcing filler, increasing the stiffness of the Bio-HDPE, and that HNTs further increases this reinforcing effect. MLO and PE-g-MA, altogether with HNTs, improve the compatibility between MAS and Bio-HDPE, particularly due to bonds formed between oxygen-based groups present in each compound. Thermal stability was also improved provided by the addition of MAS and HNTs. All in all, reddish-like brown wood plastic composites with improved stiffness, good thermal stability, enhanced compatibility, and good wettability properties were obtained.

Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4462
Author(s):  
Maria del Carmen Morcillo ◽  
Ramón Tejada ◽  
Diego Lascano ◽  
Daniel Garcia-Garcia ◽  
David Garcia-Sanoguera

The use of wood plastic composites (WPC) is growing very rapidly in recent years, in addition, the use of plastics of renewable origin is increasingly implemented because it allows to reduce the carbon footprint. In this context, this work reports on the development of composites of bio-based high density polyethylene (BioHDPE) with different contents of pinecone (5, 10, and 30 wt.%). The blends were produced by extrusion and injection-molded processes. With the objective of improving the properties of the materials, a compatibilizer has been used, namely polyethylene grafted with maleic anhydride (PE-g-MA 2 phr). The effect of the compatibilizer in the blend with 5 wt.% has been compared with the same blend without compatibilization. Mechanical, thermal, morphological, colorimetric, and wettability properties have been analyzed for each blend. The results showed that the compatibilizer improved the filler–matrix interaction, increasing the ductile mechanical properties in terms of elongation and tensile strength. Regarding thermal properties, the compatibilizer increased thermal stability and improved the behavior of the materials against moisture. In general, the pinecone materials obtained exhibited reddish-brown colors, allowing their use as wood plastic composites with a wide range of properties depending on the filler content in the blend.


2013 ◽  
Vol 423-426 ◽  
pp. 84-88
Author(s):  
Dong Xue ◽  
Wang Wang Yu ◽  
Qin Liu ◽  
Lu Jing ◽  
Xue Jing Liu ◽  
...  

In this study, silvergrass (SV) reinforced high density polyethylene (HDPE) composites were prepared. The effects of polymeric methylene diphenyl diisocyanate (PMDI), slivergrass fibers (SV) content on the thermal, crystalline properties of wood plastic composites (WPCs) were investigated. It was found that Compared with the untreated WPCs, the thermal stability of the composites after incorporation of PMDI treated SV fibers was significantly improved. Moreover, the results show that with PMDI treated composites, SV was an effective heterogeneous nucleating agent.


2013 ◽  
Vol 34 (1) ◽  
pp. 39-54 ◽  
Author(s):  
Ljerka Kratofil Krehula ◽  
Zvonimir Katančić ◽  
Anita Ptiček Siročić ◽  
Zlata Hrnjak-Murgić

2011 ◽  
Vol 471-472 ◽  
pp. 151-156 ◽  
Author(s):  
Mohd Hafizuddin Ab Ghani ◽  
Ahmad Haji Sahrim

We investigated the effects of amount of antioxidants variability on selected mechanical and physical properties of wood plastic composites. Recycled high density polyethylene (rHDPE) and natural fibers were compounded into pellets by compounder, then the pellets were extruded using co-rotating twin-screw extruder and test specimens were prepared by hot and cold press process. From the study, samples with 0.5 wt% of antioxidants produce the highest strength and elasticity of composites. The effect of antioxidants presence on water uptake is minimal.


Sign in / Sign up

Export Citation Format

Share Document