scholarly journals Direct Writing Corrugated PVC Gel Artificial Muscle via Multi-Material Printing Processes

Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2734
Author(s):  
Bin Luo ◽  
Yiding Zhong ◽  
Hualing Chen ◽  
Zicai Zhu ◽  
Yanjie Wang

Electroactive PVC gel is a new artificial muscle material with good performance that can mimic the movement of biological muscle in an electric field. However, traditional manufacturing methods, such as casting, prevent the broad application of this promising material because they cannot achieve the integration of the PVC gel electrode and core layer, and at the same time, it is difficult to create complex and diverse structures. In this study, a multi-material, integrated direct writing method is proposed to fabricate corrugated PVC gel artificial muscle. Inks with suitable rheological properties were developed for printing four functional layers, including core layers, electrode layers, sacrificial layers, and insulating layers, with different characteristics. The curing conditions of the printed CNT/SMP inks under different applied conditions were also discussed. The structural parameters were optimized to improve the actuating performance of the PVC gel artificial muscle. The corrugated PVC gel with a span of 1.6 mm had the best actuating performance. Finally, we printed three layers of corrugated PVC gel artificial muscle with good actuating performance. The proposed method can help to solve the inherent shortcomings of traditional manufacturing methods of PVC gel actuators. The printed structures have potential applications in many fields, such as soft robotics and flexible electronic devices.

Micromachines ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 170 ◽  
Author(s):  
Zeyu Chen ◽  
Xuejun Qian ◽  
Xuan Song ◽  
Qiangguo Jiang ◽  
Rongji Huang ◽  
...  

Piezoelectric arrays are widely used in non-destructive detecting, medical imaging and therapy. However, limited by traditional manufacturing methods, the array’s element is usually designed in simple geometry such as a cube or rectangle, restricting potential applications of the array. This work demonstrates an annular piezoelectric array consisting of different concentric elements printed by Mask-Image-Projection-based Stereolithography (MIP-SL) technology. The printed array displays stable piezoelectric and dielectric properties. Compared to a traditional single element transducer, the ultrasonic transducer with printed array successfully modifies the acoustic beam and significantly improves spatial resolution.


2009 ◽  
Vol 407-408 ◽  
pp. 1-7
Author(s):  
De Yuan Zhang ◽  
Jun Cai ◽  
Xing Gang Jiang ◽  
Xin Han ◽  
Bo Chen

The connotative meaning and trend of bionic design and manufacturing was analyzed. A new bioforming technology was presented, which will offer a new way to solve the difficulties in manufacturing of bionic micro-nano structures, and the layout of bioforming technology was also plotted. Several different bioforming technologies targeting typical bionic products were introduced. Compared with traditional manufacturing methods, to machine complicated micro/nano shapes, structures, functional interfaces with bioforming technology has more advantages, which showed that bioforming technologies would have great potential applications in energy-saving, environmental protection, and micro/nano fields.


2014 ◽  
Vol 11 (100) ◽  
pp. 20140834 ◽  
Author(s):  
Xiao-Yong Yan ◽  
Chen Zhao ◽  
Ying Fan ◽  
Zengru Di ◽  
Wen-Xu Wang

Despite the long history of modelling human mobility, we continue to lack a highly accurate approach with low data requirements for predicting mobility patterns in cities. Here, we present a population-weighted opportunities model without any adjustable parameters to capture the underlying driving force accounting for human mobility patterns at the city scale. We use various mobility data collected from a number of cities with different characteristics to demonstrate the predictive power of our model. We find that insofar as the spatial distribution of population is available, our model offers universal prediction of mobility patterns in good agreement with real observations, including distance distribution, destination travel constraints and flux. By contrast, the models that succeed in modelling mobility patterns in countries are not applicable in cities, which suggests that there is a diversity of human mobility at different spatial scales. Our model has potential applications in many fields relevant to mobility behaviour in cities, without relying on previous mobility measurements.


Author(s):  
Brandon Bethers ◽  
Yang Yang

Abstract Cuttlebone, the internal shell structure of a cuttlefish, presents a unique labyrinthian wall-septa design that promotes high energy absorption, porosity, and damage tolerance. This structure offers us an inspiration for the design of lightweight and strong structures for potential applications in mechanical, aerospace and biomedical engineering. However, the complexity of the cuttlebones structural design makes its fabrication by traditional manufacturing techniques not feasible. The advances in additive manufacturing (3D printing) make highly complex structures like cuttlebone possible to manufacture. In this work, the authors sought to establish comparative data between cuttlebone structures and some common support structures used in additive manufacturing. The structures compared to cuttlebone in this work include the cubic, honeycomb and triangular support structures. This was accomplished by using CAD modeling and simulation software. This study found that the cuttlefish structures had higher average stress values than the others but similar average strain values. This leads to a higher modulus of elasticity for the cuttlebone structures. The data suggests that further research into cuttlebone structures could produce future designs that improve upon the current well-established additive manufacturing support structures. Further study will be performed for the 3D printing of cuttlebone inspired structures by using various types of materials, such as soft and rigid polymers, functional ceramics, composites, and metals.


2021 ◽  
pp. 2150031
Author(s):  
H. DENİZ ADA ◽  
MEHMET ERDEM ◽  
KADİR GOK

Today, conventional machining with chip or machining without chip machining manufacturing methods is used to bring to the desired dimensions sizes the machines and equipment used in the industry. However, non-traditional manufacturing methods are used in cases where traditional machining manufacturing methods are inadequate. Cutting with water jet which is one of the non-traditional manufacturing methods is commonly used in several fields of industry. Unlike traditional manufacturing methods such as turning and milling, not using of a physical cutting tool is among the advantages of the method. Abrasive water jet manufacturing method was started to be applied by adding abrasive particles in the water jet. Apart from the superior properties of the method, possible damages occur in the water jet nozzle due to processes such as cutting or drilling by applying high pressure. Erosion-corrosion is the leading damage among these damages. In this study, the erosion-corrosion in the nozzle caused by high-pressure water and abrasive during the abrasive water jet cutting process was simulated in the computer environment. In this paper, the erosion rate in the nozzle was calculated as 6,90E-06[Formula: see text]kg/m2[Formula: see text]s. This value was converted as 0,30[Formula: see text]mm (27,09[Formula: see text]mm for yearly) via developed software for 100[Formula: see text]h.


Author(s):  
Alok Sutradhar ◽  
Jaejong Park ◽  
Payam Haghighi ◽  
Jacob Kresslein ◽  
Duane Detwiler ◽  
...  

Topology optimization provides optimized solutions with complex geometries which are often not suitable for direct manufacturing without further steps or post-processing by the designer. There has been a recent progression towards linking topology optimization with additive manufacturing, which is less restrictive than traditional manufacturing methods, but the technology is still in its infancy being costly, time-consuming, and energy inefficient. For applications in automotive or aerospace industries, the traditional manufacturing processes are still preferred and utilized to a far greater extent. Adding manufacturing constraints within the topology optimization framework eliminates the additional design steps of interpreting the topology optimization result and converting it to viable manufacturable parts. Furthermore, unintended but inevitable deviations that occur during manual conversion from the topology optimized result can be avoided. In this paper, we review recent advances to integrate (traditional) manufacturing constraints in the topology optimization process. The focus is on the methods that can create manufacturable and well-defined geometries. The survey will discuss the advantages, limitations, and related challenges of manufacturability in topology optimization.


Author(s):  
Mohammad S. Davoud

This paper describes the current types and applications of rapid prototyping (RP) systems. The capabilities of various types of RP systems are outlined, as are the benefits these systems offer when compared to traditional manufacturing methods, case studies are presented to show how some companies have reduced development costs and time-to-market by implementing RP technology. Finally, it outlines a plan for implementation of a RP system in a Mechanical Engineering Technology curriculum.


2015 ◽  
Vol 2 (3/4) ◽  
pp. 341
Author(s):  
Farid A. Tolbah ◽  
Magdy M. Abdelhameed ◽  
Mohammed Ibrahim Awad ◽  
Sabreen Abdallah Abdelwahab

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Donghwi Cho ◽  
Haomin Chen ◽  
Jonghwa Shin ◽  
Seokwoo Jeon

Abstract Smart chromatic materials with optical transmittances that can be modified by light scattering upon external stimuli are attracting extensive interest because of their appealing applications in smart windows, privacy protection, electronic displays, etc. However, the development of these scatterers, which are mostly activated by electric fields, is hindered by their intrinsic energy consumption, slow responses, and poor stability. Recently, mechanoresponsive scatterers based on a strain-driven reconfiguration of the surface or internal structure have emerged, featuring fast responses and a simple composition/fabrication. Because there is no energy consumption to maintain the transparency/opacity, this novel scheme for scatterers holds great promise to break the existing bottleneck. This article presents recent advances in the development of mechanoresponsive scatterers and compares different structural design strategies. The scatterers are categorized into 2D, 3D, and other types according to the dimensions of their functioning structures. The fabrication methods, mechanisms, and relationships between the structural parameters and optical modulating performances are discussed for each category. Next, the potential applications of these scatterers are outlined. Finally, the advantages and disadvantages of the mainstream 2D and 3D categories are summarized, followed by a perspective on future research directions.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Jeongtae Kim ◽  
Sung-Il Kim ◽  
Yeun-Ho Joung ◽  
Jiyeon Choi ◽  
Chiwan Koo

AbstractWe demonstrate a two-step hybrid process for fabricating movable parts inside glass substrate using the selective laser-induced etching (SLE) process that is consisted of laser-direct writing and wet chemical etching. To obtain an influence by the optical characteristics of a glass substrate when fabricating a 3D microstructure using the SLE, we analyzed the relationship of their dimensions between the designed and the fabricated devices. Two 3D microfluidic devices are designed and fabricated on glass substrates as the demonstrations of the hybrid process: a 3D microfluidic valve device with a movable plug and a 3D microfluidic mixer with a rotatable impeller and multilayer microchannels. The valving plug and the impeller of each device are successfully moved and rotated. The smallest structure is a pillar of the impeller device, and its size is 29 μm (diameter) × 277 μm (height). We expect this study to be extended to potential applications in 3D glass microfabrication and microfluidic systems.


Sign in / Sign up

Export Citation Format

Share Document