scholarly journals Simulation, In Vitro, and In Vivo Cytotoxicity Assessments of Methotrexate-loaded pH-Responsive Nanocarriers

Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3153
Author(s):  
Mahmood Barani ◽  
Mohammad Reza Hajinezhad ◽  
Saman Sargazi ◽  
Mahira Zeeshan ◽  
Abbas Rahdar ◽  
...  

In this study, pH-responsive niosomal methotrexate (MTX) modified with ergosterol was prepared for potential anticancer application. The prepared formulation had a size of 176.7 ± 3.4 nm, zeta potential of −31.5 ± 2.6 mV, EE% of 76.9 ± 2.5%, and a pH-responsive behavior in two different pHs (5.4 and 7.4). In-silico evaluations showed that MTX intended to make a strong hydrogen bond with Span 60 compartments involving N2 and O4 atoms in glutamic acid and N7 atom in pteridine ring moieties, respectively. The cytotoxic effects of free and pH-MTX/Nio were assessed against MCF7 and HUVECs. Compared with free MTX, we found significantly lower IC50s when MCF7 cells were treated with niosomal MTX (84.03 vs. 9.464 µg/mL after 48 h, respectively). Moreover, lower cell killing activity was observed for this formulation in normal cells. The pH-MTX/Nio exhibited a set of morphological changes in MCF7 cells observed during cell death. In-vivo results demonstrated that intraperitoneal administration of free MTX (2 mg/kg) after six weeks caused a significant increase in serum blood urea nitrogen (BUN), serum creatinine, and serum malondialdehyde (MDA) levels of rats compared to the normal control rats. Treatment with 2 and 4 mg/kg doses of pH-MTX/Nio significantly increased serum BUN, serum creatinine, and serum lipid peroxidation. Still, the safety profile of such formulations in healthy cells/tissues should be further investigated.

Author(s):  
Mahmood Barani ◽  
Mohammad Reza Hajinezhad ◽  
Saman Sargazi ◽  
Abbas Rahdar ◽  
Sheida Shahraki ◽  
...  

AbstractIn this study, paclitaxel (PTX)-loaded pH-responsive niosomes modified with ergosterol were developed. This new formulation was characterized in terms of size, morphology, encapsulation efficiency (EE), and in vitro release at pH 5.2 and 7.4. The in vitro efficacy of free PTX and niosome/PTX was assessed using MCF7, Hela, and HUVEC cell lines. In order to evaluate the in vivo efficacy of niosomal PTX in rats as compared to free PTX, the animals were intraperitoneally administered with 2.5 mg/kg and 5 mg/kg niosomal PTX for two weeks. Results showed that the pH-responsive niosomes had a nanometric size, spherical morphology, 77% EE, and pH-responsive release in pH 5.2 and 7.4. Compared with free PTX, we found markedly lower IC50s when cancer cells were treated for 48 h with niosomal PTX, which also showed high efficacy against human cancers derived from cervix and breast tumors. Moreover, niosomal PTX induced evident morphological changes in these cell lines. In vivo administration of free PTX at the dose of 2.5 mg/kg significantly increased serum biochemical parameters and liver lipid peroxidation in rats compared to the control rats. The situation was different when niosomal PTX was administered to the rats: the 5 mg/kg dosage of niosomal PTX significantly increased serum biochemical parameters, but the group treated with the 2.5 mg/kg dose of niosomal PTX showed fewer toxic effects than the group treated with free PTX at the same dosage. Overall, our results provide proof of concept for encapsulating PTX in niosomal formulation to enhance its therapeutic efficacy.


2020 ◽  
Vol 19 (17) ◽  
pp. 2108-2119
Author(s):  
Yang Jin ◽  
Li Lv ◽  
Shu-Xiang Ning ◽  
Ji-Hong Wang ◽  
Rong Xiao

Background: Laryngeal Squamous Cell Carcinoma (LSCC) is a malignant epithelial tumor with poor prognosis and its incidence rate increased recently. rLj-RGD3, a recombinant protein cloned from the buccal gland of Lampetra japonica, contains three RGD motifs that could bind to integrins on the tumor cells. Methods: MTT assay was used to detect the inhibitory rate of viability. Giemsa’s staining assay was used to observe the morphological changes of cells. Hoechst 33258 and TUNEL staining assay, DNA ladder assay were used to examine the apoptotic. Western blot assay was applied to detect the change of the integrin signal pathway. Wound-healing assay, migration, and invasion assay were used to detect the mobility of Hep2 cells. H&E staining assay was used to show the arrangement of the Hep2 cells in the solid tumor tissues. Results: In the present study, rLj-RGD3 was shown to inhibit the viability of LSCC Hep2 cells in vitro by inducing apoptosis with an IC50 of 1.23µM. Western blot showed that the apoptosis of Hep2 cells induced by rLj- RGD3 was dependent on the integrin-FAK-Akt pathway. Wound healing, transwells, and western blot assays in vitro showed that rLj-RGD3 suppressed the migration and invasion of Hep2 cells by integrin-FAKpaxillin/ PLC pathway which could also affect the cytoskeleton arrangement in Hep2 cells. In in vivo studies, rLj-RGD3 inhibited the growth, tumor volume, and weight, as well as disturbed the tissue structure of the solid tumors in xenograft models of BALB/c nude mice without reducing their body weights. Conclusion: hese results suggested that rLj-RGD3 is an effective and safe suppressor on the growth and metastasis of LSCC Hep2 cells from both in vitro and in vivo experiments. rLj-RGD3 might be expected to become a novel anti-tumor drug to treat LSCC patients in the near future.


Author(s):  
AMOL SHETE ◽  
PRIYANKA THORAT ◽  
RAJENDRA DOIJAD ◽  
SACHIN SAJANE

Objective: The objectives of present investigation were to prepare and evaluate proniosomes of neomycin sulphate (NS) by coacervation phase separation method by using sorbitan monostearate (span 60) and lecithin as a surfactant to increase the penetration through the skin and study the effect of concentration of the same. Methods: Proniosomes of neomycin sulphate (NS) were prepared by coacervation phase separation method by using span 60 and lecithin. The effect of concentration of span 60 and lecithin was studied by factorial design. The prepared proniosomes were converted to gel by using carbopol as a gelling agent. The prepared formulations were evaluated for entrapment efficiency, in vitro drug diffusion, in vitro antibacterial activity and in vivo skin irritation test etc. Results: All Formulation showed the percentage entrapment efficiency in the range 38.31±0.05% to 77.96±0.06%, good homogeneity and gel was easily spreadable with minimal of shear. Optimized formulation showed enhanced rate of diffusion in vitro, increase in zone of inhibition against staphylococcus aureus, no skin irritation and showed good stability. Conclusion: The results of present study indicates that proniosomal gel formulated by using combination of span 60, Lecithin, cholesterol can be used to enhance skin delivery of NS because of excellent permeation of drug. Developed proniosomal gel formulation was promising carrier for NS


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sachiko Iwai ◽  
Hanako O. Ikeda ◽  
Hisashi Mera ◽  
Kohei Nishitani ◽  
Motoo Saito ◽  
...  

AbstractCurrently there is no effective treatment available for osteoarthritis (OA). We have recently developed Kyoto University Substances (KUSs), ATPase inhibitors specific for valosin-containing protein (VCP), as a novel class of medicine for cellular protection. KUSs suppressed intracellular ATP depletion, endoplasmic reticulum (ER) stress, and cell death. In this study, we investigated the effects of KUS121 on chondrocyte cell death. In cultured chondrocytes differentiated from ATDC5 cells, KUS121 suppressed the decline in ATP levels and apoptotic cell death under stress conditions induced by TNFα. KUS121 ameliorated TNFα-induced reduction of gene expression in chondrocytes, such as Sox9 and Col2α. KUS121 also suppressed ER stress and cell death in chondrocytes under tunicamycin load. Furthermore, intraperitoneal administration of KUS121 in vivo suppressed chondrocyte loss and proteoglycan reduction in knee joints of a monosodium iodoacetate-induced OA rat model. Moreover, intra-articular administration of KUS121 more prominently reduced the apoptosis of the affected chondrocytes. These results demonstrate that KUS121 protects chondrocytes from stress-induced cell death in vitro and in vivo, and indicate that KUS121 is a promising novel therapeutic agent to prevent the progression of OA.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii98-ii98
Author(s):  
Anne Marie Barrette ◽  
Alexandros Bouras ◽  
German Nudelman ◽  
Zarmeen Mussa ◽  
Elena Zaslavsky ◽  
...  

Abstract Glioblastoma (GBM) remains an incurable disease, in large part due to its malignant infiltrative spread, and current clinical therapy fails to target the invasive nature of tumor cells in disease progression and recurrence. Here, we use the YAP-TEAD inhibitor Verteporfin to target a convergence point for regulating tumor invasion/metastasis and establish the robust anti-invasive therapeutic efficacy of this FDA-approved drug and its survival benefit across several preclinical glioma models. Using patient-derived GBM cells and orthotopic xenograft models (PDX), we show that Verteporfin treatment disrupts YAP/TAZ-TEAD activity and processes related to cell adhesion, migration and epithelial-mesenchymal transition. In-vitro, Verteporfin impairs tumor migration, invasion and motility dynamics. In-vivo, intraperitoneal administration of Verteporfin in mice with orthotopic PDX tumors shows consistent drug accumulation within the brain and decreased infiltrative tumor burden, across three independent experiments. Interestingly, PDX tumors with impaired invasion after Verteporfin treatment downregulate CDH2 and ITGB1 adhesion protein levels within the tumor microenvironment. Finally, Verteporfin treatment confers survival benefit in two independent PDX models: as monotherapy in de-novo GBM and in combination with standard-of-care chemoradiation in recurrent GBM. These findings indicate potential therapeutic value of this FDA-approved drug if repurposed for GBM patients.


2015 ◽  
Vol 210 (5) ◽  
pp. 771-783 ◽  
Author(s):  
Norbert Bencsik ◽  
Zsófia Szíber ◽  
Hanna Liliom ◽  
Krisztián Tárnok ◽  
Sándor Borbély ◽  
...  

Actin turnover in dendritic spines influences spine development, morphology, and plasticity, with functional consequences on learning and memory formation. In nonneuronal cells, protein kinase D (PKD) has an important role in stabilizing F-actin via multiple molecular pathways. Using in vitro models of neuronal plasticity, such as glycine-induced chemical long-term potentiation (LTP), known to evoke synaptic plasticity, or long-term depolarization block by KCl, leading to homeostatic morphological changes, we show that actin stabilization needed for the enlargement of dendritic spines is dependent on PKD activity. Consequently, impaired PKD functions attenuate activity-dependent changes in hippocampal dendritic spines, including LTP formation, cause morphological alterations in vivo, and have deleterious consequences on spatial memory formation. We thus provide compelling evidence that PKD controls synaptic plasticity and learning by regulating actin stability in dendritic spines.


1972 ◽  
Vol 126 (2) ◽  
pp. 347-350 ◽  
Author(s):  
A. A.-B. Badawy

1. Salicylate, in concentrations of 0.25mm and above, enhances the basal activity of tyrosine–2-oxoglutarate aminotransferase in homogenates of rat liver incubated in the absence of added pyridoxal 5′-phosphate (endogenous activity). The effect is decreased by increasing the concentration of the cofactor. 2. The intraperitoneal administration of sodium salicylate enhances the activity of rat liver tyrosine aminotransferase; the major effect during the first hour being on the enzyme in the absence of added pyridoxal phosphate. Actinomycin D prevents the induction of the enzyme by cortisol and tryptophan. Induction by pyridoxine or salicylate is 50% inhibited by actinomycin D. The effects of the injections of various combinations of cortisol, pyridoxine and salicylate were also studied in the absence or presence of actinomycin D. 3. It is suggested that salicylate induces rat liver tyrosine aminotransferase by displacing its protein-bound cofactor and that a cofactor-type induction of the hepatic enzyme occurs in pyridoxine-treated rats.


2018 ◽  
Vol 11 (5) ◽  
pp. 371-382 ◽  
Author(s):  
Limin Liu ◽  
Peng Zhang ◽  
Ming Bai ◽  
Lijie He ◽  
Lei Zhang ◽  
...  

Abstract Hypoxia plays an important role in the genesis and progression of renal fibrosis. The underlying mechanisms, however, have not been sufficiently elucidated. We examined the role of p53 in hypoxia-induced renal fibrosis in cell culture (human and rat renal tubular epithelial cells) and a mouse unilateral ureteral obstruction (UUO) model. Cell cycle of tubular cells was determined by flow cytometry, and the expression of profibrogenic factors was determined by RT-PCR, immunohistochemistry, and western blotting. Chromatin immunoprecipitation and luciferase reporter experiments were performed to explore the effect of HIF-1α on p53 expression. We showed that, in hypoxic tubular cells, p53 upregulation suppressed the expression of CDK1 and cyclins B1 and D1, leading to cell cycle (G2/M) arrest (or delay) and higher expression of TGF-β, CTGF, collagens, and fibronectin. p53 suppression by siRNA or by a specific p53 inhibitor (PIF-α) triggered opposite effects preventing the G2/M arrest and profibrotic changes. In vivo experiments in the UUO model revealed similar antifibrotic results following intraperitoneal administration of PIF-α (2.2 mg/kg). Using gain-of-function, loss-of-function, and luciferase assays, we further identified an HRE3 region on the p53 promoter as the HIF-1α-binding site. The HIF-1α–HRE3 binding resulted in a sharp transcriptional activation of p53. Collectively, we show the presence of a hypoxia-activated, p53-responsive profibrogenic pathway in the kidney. During hypoxia, p53 upregulation induced by HIF-1α suppresses cell cycle progression, leading to the accumulation of G2/M cells, and activates profibrotic TGF-β and CTGF-mediated signaling pathways, causing extracellular matrix production and renal fibrosis.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Laura Graciotti ◽  
Toru Hosoda ◽  
Fumihiro Sanada ◽  
Giulia Borghetti ◽  
Christian Arranto ◽  
...  

The low incidence of cardiac tumors has been attributed to tissue pressure dictated by myocardial mechanics and large coronary blood flow. These variables, however, have failed to consider the possibility that the rare occurrence of heart neoplasms may be dictated by the molecular characteristics of cardiomyocytes. We have shown that miR-1, miR-133a, and miR-499 translocate from myocytes to co-cultured MCF7 breast cancer cells, inhibiting their growth. The transfer of miRs is mediated by gap junction channels and is abolished by Cx43 and Cx45 silencing. Although these in vitro results provided important information on the inhibitory function of miRs in cell proliferation, co-culture of myocytes and cancer cells does not mimic the in vivo organization of the myocardium that allows the formation of multiple sites of coupling between myocytes and tumor cells. To reproduce, at least in part, the in vivo condition, we developed first a physiological model of organ culture. Thick vibratome-cut myocardial slices were placed on a multiwell plate containing an oxygen-saturated sponge. At 24-48 hours, the cultured tissue was viable and myocytes showed a well organized sarcomere structure. Two hours after plating of the organ slices, control MCF7 cells or MCF7 cells in which Cx43 and Cx45 were silenced (MCF7-shCx43-shCx45) were seeded on the myocardium. Control MCF7 cells showed a slower growth rate than MCF7-shCx43-shCx45 cells, a finding consistent with miR translocation and its blockade, respectively. Second, 1 x 106 MCF7 or MCF7 cells overexpressing miR-1, miR-133a, and miR-499 (MCF7-miRs) were injected subcutaneously in NOD-SCID mice; ~45 days later, the tumors developed from MCF7 cells were more than 10-fold larger and 3-fold heavier than those originated from MCF7-miRs cells. Third, these studies were complemented with the intramyocardial injection of 1 x 105 control MCF7 cells. Five weeks later, no neoplastic lesions were identified. However, when an excessive number of MCF7 cells were injected, 1 x 106, tumor formation was apparent. In conclusion, our results indicate that transfer of miR-1, miR-133a, and miR-499 from cardiomyocytes to cancer cells plays a critical role in preventing the generation of tumors in the myocardium.


Sign in / Sign up

Export Citation Format

Share Document