scholarly journals Modeling Experimental Parameters for the Fabrication of Multifunctional Surfaces Composed of Electrospun PCL/ZnO-NPs Nanofibers

Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4312
Author(s):  
Pedro J. Rivero ◽  
Juan P. Fuertes ◽  
Adrián Vicente ◽  
Álvaro Mata ◽  
José F. Palacio ◽  
...  

In this work, a one-step electrospinning technique has been implemented for the design and development of functional surfaces with a desired morphology in terms of wettability and corrosion resistance by using polycaprolactone (PCL) and zinc oxide nanoparticles (ZnO NPs). The surface morphology has been characterized by confocal microscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM) and water contact angle (WCA), whereas the corrosion resistance has been evaluated by Tafel polarization curves. Strict control over the input operational parameters (applied voltage, feeding rate, distance tip to collector), PCL solution concentration and amount of ZnO NPs have been analyzed in depth by showing their key role in the final surface properties. With this goal in mind, a design of experiment (DoE) has been performed in order to evaluate the optimal coating morphology in terms of fiber diameter, surface roughness (Ra), water contact angle (WCA) and corrosion rate. It has been demonstrated that the solution concentration has a significant effect on the resultant electrospun structure obtained on the collector with the formation of beaded fibers with a higher WCA value in comparison with uniform bead-free fibers (dry polymer deposition or fiber-merging aspect). In addition, the presence of ZnO NPs distributed within the electrospun fibers also plays a key role in corrosion resistance, although it also leads to a decrease in the WCA. Finally, this is the first time that an exhaustive analysis by using DoE has been evaluated for PCL/ZnO electrospun fibers with the aim to optimize the surface morphology with the better performance in terms of corrosion resistance and wettability.

Polymers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 590 ◽  
Author(s):  
Xiao Li ◽  
Xiao-Xiong Wang ◽  
Tian-Tian Yue ◽  
Yuan Xu ◽  
Ming-Liang Zhao ◽  
...  

This study shows the feasibility of using electrospinning technique to prepare polytetrafluoroethylene/poly (vinyl alcohol) (PTFE/PVA) nanofibers on PTFE microfiber membrane as substrate. Then, PVA in the fiber membrane was removed by thermal treatment at about 350 °C. Compared to PTFE microfiber substrates, the composite PTFE fiber membranes (CPFMs) have improved filtration efficiency by 70% and water contact angle by 23°. Experimental test data showed that the water contact angle of the sample increased from about 107° to 130°, the filtration efficiency of PM2.5 increased from 44.778% to 98.905%, and the filtration efficiency of PM7.25 increased from 66.655% to 100% due to the electrospun PTFE nanofiber layer. This work demonstrates the potential of CPFMs as a filter for the production of indoor or outdoor dust removal and industrially relevant gas filtration.


Author(s):  
Choi Yee Foong ◽  
Naznin Sultana

Recently, in the field of tissue engineering, fabrication of three-dimensional (3D) electrospun scaffold or membrane is much emphasized. In this study, layered composite scaffolds or membranes were fabricated using two biodegradable polymers, polycaprolactone (PCL) and Chitosan layer-by-layer with multilayer electrospinning method. Characterizations of membranes were done using several techniques. Electrospun composite membrane’s surface morphology was examined using a Scanning Electron Microscopy (SEM) and the wettability of the material’s surface was determined using water contact angle measuring measurement (WCA). Water uptake properties of electrospun membrane were also determined. Using optimized solution concentration and electrospinning processing parameters, the composite PCL/Chitosan and PCL layer-by-layer were successfully fabricated. It was observed from SEM that the composite electrospun membranes produced consisted microfibers and nanofibers within single scaffold. The water contact angle for the double-layered composite electrospun membranes was lower than the pure PCL. The double-layered composite membrane also had higher water uptake properties compared to pure PCL scaffold.


2016 ◽  
Vol 15 (01n02) ◽  
pp. 1650005 ◽  
Author(s):  
Natthan Charernsriwilaiwat ◽  
Theerasak Rojanarata ◽  
Tanasait Ngawhirunpat ◽  
Praneet Opanasopit

Electrospun nanofibrous materials are widely used in medical applications such as tissue engineering scaffolds, wound dressing material and drug delivery carriers. For tissue engineering scaffolds, the structure of the nanofiber is similar to extracellular matrix (ECM) which promotes the cell growth and proliferation. In the present study, the aligned nanofiber mats of polyvinyl pyrrolidone (PVP) blended poly [Formula: see text]-caprolactone (PCL) was successfully generated using electrospinning technique. The morphology of PVP/PCL nanofiber mats were characterized by scanning electron microspore (SEM). The chemical and crystalline structure of PVP/PCL nanofiber mats were analyzed using Fourier transform infrared spectroscopy (FTIR) and powder X-ray diffactometer (PXRD). The water contact angle of mats was investigated. Cell culture studies using normal human fibroblasts (NHF) were performed to assess cell morphology, cell alignment and cell proliferation. The results indicated that the fiber were in nanometer range. The PVP/PCL was well dispersed in nanofiber mats and was in amorphous form. The water contact angle of PVP/PCL nanofiber mats was lower than PCL nanofiber mats. The PVP/PCL nanofiber mats exhibited good biocompatibility with NHF cells. In summary, the PVP/PCL nanofiber mats had potential to be used in tissue engineering and regenerative medicine.


2016 ◽  
Vol 47 (1) ◽  
pp. 125-146 ◽  
Author(s):  
Mehmet Dasdemir ◽  
Hatice Ibili

This study focuses on the development of superhydrophobic and alcohol-repellent medical nonwoven fabrics via electrohydrodynamic atomization (electrospraying). It also compares the effectiveness of electrospraying with conventional pad-dry-cure finishing application. A commercial fluorochemical finishing agent was used to prepare fluorochemical solutions at varying concentrations (0.9–9 wt%). Electrospraying characteristics of these solutions were determined with characterizing their solution properties such as viscosity, conductivity and surface tension. After the successful applications of fluorochemical solutions on nonwoven fabrics via padding and electrospraying, wet pick-up ratios and weight gains of these fabrics were calculated. Also, water and alcohol repellencies of the coated fabrics were characterized with water contact angle and alcohol contact angle measurements. According to our findings, electrospraying application yielded less chemical consumption and higher water contact angle and alcohol contact angle results than padding. Increasing solution concentration and application time for electrospraying enhanced water contact angle values, which reached a maximum level (up to 156°) and afterwards remained almost constant depending on these variables. Thus, their limits to achieve superhydrophobic surfaces were able to be determined. Electrosprayed nonwovens were also shown to be alcohol-repellent against alcohol/water mixture of 70/30 (v/v%) whereas that was 30/70 (v/v%) for padded nonwovens. The investigation of the electrosprayed surfaces revealed a very less coating on the uppermost side of surface fibres which mostly led to the enhanced water and alcohol repellencies. One of the other important outcomes of this study is that there was no significant change on the comfort properties of nonwoven fabrics after the electrospraying application.


Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 464
Author(s):  
Adrián Vicente ◽  
Pedro J. Rivero ◽  
José F. Palacio ◽  
Rafael Rodríguez

Among the various polymeric options employed for the deposition of electrospun coatings, poly(vinylidene fluoride) (PVDF) has been widely investigated thanks to its excellent mechanical properties, high chemical resistance, and good thermal stability. In this work, the electrospinning technique is used for the fabrication of functional PVDF fibers in order to identify and evaluate the influence of the experimental conditions on the nanofiber properties in terms of optical transmittance, wettability, corrosion resistance, and surface morphology. Some of these properties can play a relevant role in the prevention of ice formation in aircrafts. According to this, a matrix of 4 × 4 samples of aluminum alloy AA 6061T6 was successfully coated by controlling two operational input parameters such as the resultant applied voltage (from 10 up to 17.5 KV) and the flow rate (from 800 up to 1400 µL/h) for a fixed polymeric precursor concentration (15 wt.%). The experimental results have shown a multilevel fiber-bead structure where the formation of a fiber mesh directly depends on the selected operational parameters. Several microscopy and surface analysis techniques such as confocal microscopy (CM), field emission scanning electron microscopy (FE-SEM), UV/vis spectroscopy, and water contact angle (WCA) were carried out in order to corroborate the morphology, transmittance, and hydrophobicity of the electrospun fiber composite. Finally, the corrosion behavior was also evaluated by electrochemical tests (Tafel curves measurement), showing that the presence of electrospun PVDF fibers produces a relevant improvement in the resultant corrosion resistance of the coated aluminum alloys.


Coatings ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 300 ◽  
Author(s):  
Pedro Rivero ◽  
David Yurrita ◽  
Carlos Berlanga ◽  
José Palacio ◽  
Rafael Rodríguez

In this work, a novel coating was deposited on aluminum alloy samples by using a combination of electrospinning and chemical vapor deposition (CVD-silanization) techniques in order to create a functionalized film with an enhancement of both corrosion resistance and hydrophobicity. The electrospinning technique makes the fabrication of highly crosslinked electrospun fibers possible by the combination of both poly(acrylic acid) and β-cyclodextrin, respectively, which can be easily functionalized in a further step by using the CVD-silanization process due to the evaporation of a hydrophobic molecule such as 1H,1H,2H,2H-Perflurodecyltriethoxysilane. In addition, the resultant electrospun fibers with a high degree of insolubility have been successfully fabricated and metal oxide nanoparticles (TiO2NPs) have been incorporated into the electrospun polymeric solution in order to improve the corrosion protection. The surface morphology has been determined by using light optical microscopy, atomic force microscopy, scanning electron microscopy, and water contact angle (WCA) measurements. The corrosion resistance has been evaluated by using both potentiodynamic polarization and pitting corrosion tests. Finally, the results related to WCA measurements after CVD-silanization corroborate that the surfaces have been successfully functionalized with a hydrophobic behavior in comparison with the electrospinning process, showing a considerable difference in the roughness.


2021 ◽  
Vol 11 (12) ◽  
pp. 5565
Author(s):  
Doo-Hyeb Youn ◽  
Kyu-Sung Lee ◽  
Sun-Kyu Jung ◽  
Mangu Kang

This paper discusses the fabrication and characterization of electrospun nanofiber scaffolds made of polystyrene (PS). The scaffolds were characterized in terms of their basis material molecular weight, fiber diameter distribution, contact angles, contact angle hysteresis, and transmittance. We propose an aligned electrospun fiber scaffold using an alignment tool (alignment jig) for the fabrication of highly hydrophobic (θW > 125°) and highly transparent (T > 80.0%) films. We fabricated the alignment jig to align the electrospun fibers parallel to each other. The correlation between the water contact angles and surface roughness of the aligned electrospun fibers was investigated. We found that the water contact angle increased as the surface roughness was increased. Therefore, the hydrophobic properties of the aligned electrospun fibers were enhanced by increasing the surface roughness. With the change in the electrospinning mode to produce aligned fibers rather than randomly distributed fibers, the transmittance of the aligned electrospun fibers increased. The increase in the porous area, leading to better light transmittance in comparison to randomly distributed light scattering through the aligned electrospun fibers increased with the fibers. Through the above investigation of electrospinning parameters, we obtained the simultaneous transparent (>80%) and hydrophobic (θW > 140°) electrospun fiber scaffold. The aligned electrospun fibers of PS had a maximum transmittance of 91.8% at the electrospinning time of 10 s. The water contact angle (WCA) of the aligned electrospun fibers increased from 77° to 141° as the deposition time increased from 10 s to 40 s. The aligned fibers deposited at 40 s showed highly hydrophobic characteristics (θW > 140°).


RSC Advances ◽  
2016 ◽  
Vol 6 (13) ◽  
pp. 10930-10937 ◽  
Author(s):  
Huaiyuan Wang ◽  
Xiguang Zhang ◽  
Zhanjian Liu ◽  
Yixing Zhu ◽  
Shiqi Wu ◽  
...  

In this study, a superhydrophobic polysulfone (PSU) composite coating with a high water contact angle (WCA) of 159° and a low slide angle (SA) of only 3.5° has been fabricated through a simple thermal spraying method.


Sign in / Sign up

Export Citation Format

Share Document