scholarly journals Effects of Raw Material Source on the Properties of CMC Composite Films

Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 32
Author(s):  
Yao Yao ◽  
Zhenbing Sun ◽  
Xiaobao Li ◽  
Zhengjie Tang ◽  
Xiaoping Li ◽  
...  

Sodium carboxymethyl cellulose (CMC) can be derived from a variety of cellulosic materials and is widely used in petroleum mining, construction, paper making, and packaging. CMCs can be derived from many sources with the final properties reflecting the characteristics of the original lignocellulosic matrix as well as the subsequent separation steps that affect the degree of carboxy methyl substitution on the cellulose hydroxyls. While a large percentage of CMCs is derived from wood pulp, many other plant sources may produce more attractive properties for specific applications. The effects of five plant sources on the resulting properties of CMC and CMC/sodium alginate/glycerol composite films were studied. The degree of substitution and resulting tensile strength in leaf-derived CMC was from 0.87 to 0.89 and from 15.81 to 16.35 MPa, respectively, while the degree of substitution and resulting tensile strength in wooden materials-derived CMC were from 1.08 to 1.17 and from 26.08 to 28.97 MPa, respectively. Thus, the degree of substitution and resulting tensile strength tended to be 20% lower in leaf-derived CMCs compared to those prepared from wood or bamboo. Microstructures of bamboo cellulose, bamboo CMC powder, and bamboo leaf CMC composites’ films all differed from pine-derived material, but plant source had no noticeable effect on the X-ray diffraction characteristics, Fourier transform infrared spectroscopy spectra, or pyrolysis properties of CMC or composites films. The results highlighted the potential for using plant source as a tool for varying CMC properties for specific applications.

Author(s):  
Azimmatul Ihwah ◽  
Retno Astuti ◽  
E. F. Sri Maryani Santoso ◽  
Afifah Ulfah

Malang Regency produced 690,136 tons banana in 2016. The banana production is in line with the waste (banana stalks). Banana stalks contain 83.3% cellulose and 2.97% lignin, of which can be used as raw material for paperboard making. However, the banana leaf paper has a low tensile strength of 7.45 N/mm2, so additional fibers to strengthen the paper is necessary, such as coconut coir which has a tensile strength of 46.67 N/mm2. This research aimed to formulate the material for paper making, such as the fiber source (banana fronds and coconut coir), filler (tapioca), and water to produce paperboard with minimal costs. The research was conducted using a linear programming method with LINDO software. The formulation of a sheet of cardboard produced was 34.79 g of dry banana stalks, 19.20 g of coconut coir, 6.00 g of tapioca, 136.08 g of NaOH, 2080 mL of distilled water, and 1000 mL of water with manufacturing cost of IDR 6,931.15. The paper characteristics has gramature of 323.8 g/m2, moisture content of 19.75%, water absorption test of 743.2 g/m2, tensile resistance of 1.4 kN/m, and stiffness of 5.7 mN.m.


2011 ◽  
Vol 695 ◽  
pp. 170-173 ◽  
Author(s):  
Voravadee Suchaiya ◽  
Duangdao Aht-Ong

This work focused on the preparation of the biocomposite films of polylactic acid (PLA) reinforced with microcrystalline cellulose (MCC) prepared from agricultural waste, banana stem fiber, and commercial microcrystalline cellulose, Avicel PH 101. Banana stem microcrystalline cellulose (BS MCC) was prepared by three steps, delignification, bleaching, and acid hydrolysis. PLA and two types of MCC were processed using twin screw extruder and fabricated into film by a compression molding. The mechanical and crystalline behaviors of the biocomopsite films were investigated as a function of type and amount of MCC. The tensile strength and Young’s modulus of PLA composites were increased when concentration of MCC increased. Particularly, banana stem (BS MCC) can enhance tensile strength and Young’s modulus of PLA composites than the commercial MCC (Avicel PH 101) because BS MCC had better dispersion in PLA matrix than Avicel PH 101. This result was confirmed by SEM image of fractured surface of PLA composites. In addition, XRD patterns of BS MCC/PLA composites exhibited higher crystalline peak than that of Avicel PH 101/PLA composites


2021 ◽  
Vol 164 ◽  
pp. 106029
Author(s):  
Diego Maciel Gerônimo ◽  
Sheila Catarina de Oliveira ◽  
Frederico Luis Felipe Soares ◽  
Patricio Peralta-Zamora ◽  
Noemi Nagata

Cellulose ◽  
2021 ◽  
Author(s):  
Ana Luiza P. Queiroz ◽  
Brian M. Kerins ◽  
Jayprakash Yadav ◽  
Fatma Farag ◽  
Waleed Faisal ◽  
...  

AbstractMicrocrystalline cellulose (MCC) is a semi-crystalline material with inherent variable crystallinity due to raw material source and variable manufacturing conditions. MCC crystallinity variability can result in downstream process variability. The aim of this study was to develop models to determine MCC crystallinity index (%CI) from Raman spectra of 30 commercial batches using Raman probes with spot sizes of 100 µm (MR probe) and 6 mm (PhAT probe). A principal component analysis model separated Raman spectra of the same samples captured using the different probes. The %CI was determined using a previously reported univariate model based on the ratio of the peaks at 380 and 1096 cm−1. The univariate model was adjusted for each probe. The %CI was also predicted from spectral data from each probe using partial least squares regression models (where Raman spectra and univariate %CI were the dependent and independent variables, respectively). Both models showed adequate predictive power. For these models a general reference amorphous spectrum was proposed for each instrument. The development of the PLS model substantially reduced the analysis time as it eliminates the need for spectral deconvolution. A web application containing all the models was developed. Graphic abstract


2013 ◽  
Vol 750-752 ◽  
pp. 1919-1923 ◽  
Author(s):  
Guo Xian Zhou ◽  
Ming Wei Yuan ◽  
Lin Jiang ◽  
Ming Long Yuan ◽  
Hong Li Li

The laponite-poly (L-lactide) composite films are prepared by the method of solution blending with polylactide (PLA) and laponite. The result shows that the homogeneous and smooth composite film is prepared with 1, 4-dioxane. Thermogravimetry analysis (TG) and tensile strength studies demonstrate that the thermal stability and tensile strength are improved with the laponite added. The scanning electron microscopy (SEM) measurement indicates that the pores of composite films get uniform and network structure is more and more compact with compared to pure PLA film. The present study reveals that the laponite as a complexing agent can improve the mechanical properties and thermal stability of PLA.


2014 ◽  
Vol 36 (12) ◽  
pp. 2303-2308 ◽  
Author(s):  
Hengxue Xiang ◽  
Lili Li ◽  
Shichao Wang ◽  
Renlin Wang ◽  
Yanhua Cheng ◽  
...  

2021 ◽  
pp. 105733
Author(s):  
B.K. Kenzhaliyev ◽  
T. Yu Surkovа ◽  
M.N. Azlan ◽  
S.B. Yulusov ◽  
B.M. Sukurov ◽  
...  

2021 ◽  
Vol 74 ◽  
pp. 102384
Author(s):  
Sara Kasmaeeyazdi ◽  
Mehdi Abdolmaleki ◽  
Elsy Ibrahim ◽  
Jingyi Jiang ◽  
Ignacio Marzan ◽  
...  

Author(s):  
Bilge Gözener ◽  
Halime Dereli

Tomato comes as the most commonly produced, consumed and subject for trading in the world. Alongside fresh consumption, on the other hand it forms the most significant raw material source of food industry, especially for tomato paste, frozen and dried vegetable-fruit and canned food industry. Turkey's greenhouse vegetable production field for 2016 year is 675173 decars and Antalya forms 51% of this field. Tomato forms 61.72% of Antalya's greenhouse production. The main material of the research consists of interviews made with producers resided in 5 villages/towns, where greenhouse tomato production is carried out densely in Antalya city, Alanya district. In 48 villages and towns, greenhouse tomato production is carried out, according to the official records. In the chosen areas, 365 producers exist. 20% of these producers (73) form the sample size. In the research, it was determined that the producers' average agricultural land possession is 9.13 decars and in 40.53% of these areas they grew tomatoes. None of these producers are engaged in contractual growing. All of the yield is produced for the edible (as table-top item). After the harvest, all of the products are sold in the wholesales market in county and city. 7.89% of the producers have no information on soilless agriculture, as 10.52% of them think that it has no advantages and 73.36% of them recommend traditional agriculture.


Sign in / Sign up

Export Citation Format

Share Document