scholarly journals Structural Behavior of RC Column Confined by FRP Sheet under Uniaxial and Biaxial Load

Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 75
Author(s):  
Huynh-Xuan Tin ◽  
Ngo-Thanh Thuy ◽  
Soo-Yeon Seo

Various researches have been performed to find an effective confining method using FRP sheet in order to improve the structural capacity of reinforced concrete column. However, most of these researches were undertaken for the columns subjected to concentric compressive load or fully confined RC columns. To date, it remains hard to find studies on partially FRP-confined RC columns under eccentric load. In this manner, an experimental investigation was carried out to assess the performance of rectangular RC column with different patterns of CFRP-wrap subject to eccentric loads in this paper. The experiment consists of fourteen mid-scale rectangular RC columns of 200 mm × 200 mm × 800 mm, including five controlled columns and nine CFRP-strengthened ones. All CFRP-strengthened columns were reinforced with one layer of vertical CFRP sheet with the main fiber along the axial axis at four sides, then divided into three groups according to confinement purpose, namely unconfined, partially CFRP-confined, and fully CFRP-confined group. Two loading conditions, namely uniaxially and biaxially eccentric loads, are considered as one of the test parameters. From the test of uniaxial eccentric load, partial and full CFRP-wraps provided 19% and 33% increased load-carrying capacity at an eccentricity-to-column thickness ratio (e/h) of 0.125, respectively, compared to controlled columns, and 8% and 11% at e/h = 0.25, respectively. For the partially CFRP-confined columns subjected to biaxial eccentric load with e/h = 0.125 and 0.25, the load-carrying capacities were improved by 19% and 31%, respectively. This means that the partial confinement with CFRP effectively improves the load-carrying capacity at larger biaxial eccentric load. It was found that the load-carrying capacity could be properly predicted by using code equations of ACI 440.2R-17 and Fib Bulletin 14 Guideline for the full CFRP-confined or partially CFRP-confined columns under uniaxial load. For partially CFRP-confined columns under biaxial loading, however, the safety factors using the Fib calculation process were 20% to 31% lower than that of uniaxially loaded columns.

2013 ◽  
Vol 671-674 ◽  
pp. 1319-1323
Author(s):  
Zi Xue Lei ◽  
Yu Hang Han ◽  
San Sheng Dong ◽  
Jun Qing Guo

A centrally reinforced column is a new type of RC columns, formed by providing a reinforcement skeleton at the central part of the cross section of an ordinary RC column. Tests have shown that as compared with an ordinary RC column, this type of columns has a higher load carrying capacity and ductility. From the pushover analysis of a frame composed of ordinary RC columns and one consisting of centrally reinforced columns, their seismic performance under seismic load of 9-degree intensity was studied according to Chinese code, including target displacements, story-level displacements, interstory drifts, appearance and development of plastic hinges. The results indicate that although the dimensions of cross sections of columns in the frame with centrally reinforced columns are smaller than those of the ordinary frame, the former still has a higher overall load carrying capacity and seismic performance than the latter.


Author(s):  
Trung Hieu Nguyen ◽  
Xuan Dat Pham ◽  
Khuong Duy Tran

Strengthening of reinforced concrete (RC) columns is needed when the actual load-carrying capacity of the columns does not reach the required level due to either structural deterioration or increasing acting loads. This experimental study aims to evaluate the strengthening effect on the eccentrically-compressed RC columns using Carbon fiber reinforced polymer (CFRP) sheets, that confine around the column cross-section. Three RC column specimens with the same geometrical dimensions, reinforcement detailing, and concrete compressive strength were cast and tested in the current experimental investigation. One RC column without being strengthened is referred as the control specimen whereas two other RC columns were partially strengthened by CFRP sheets. All three RC columns were axially loaded with the same initial eccentricity e0 of 80 mm. Based on the test results such as the ultimate load-carrying capacity, the load-rotation relationship, and load-curvature at the middle of column height, the effectiveness of the strengthening technique is discussed.


2018 ◽  
Vol 22 (7) ◽  
pp. 1554-1565 ◽  
Author(s):  
Jianwei Tu ◽  
Kui Gao ◽  
Lang He ◽  
Xinping Li

At present, extensive studies have been conducted relative to the topic of fiber-reinforced polymer(FRP)- reinforced concrete (RC) flexural members, and many design methods have also been introduced. There have, however, been few studies conducted on the topic of FRP-RC compression members. In light of this, eight glass-fiber-reinforced polymer (GFRP)-RC square columns (200×200×600 mm) were tested in order to investigate their axial compression performance. These columns were reinforced with GFRP longitudinal reinforcement and confined GFRP stirrup. These experiments investigated the effects of the longitudinal reinforcement ratio, stirrup configuration (spirals versus hoops) and spacing on the load-carrying capacity and failure modes of GFRP-RC rectangular columns. The test results indicate that the load-carrying capacity of longitudinal GFRP bars accounted for 3%-7% of the ultimate load-carrying capacity of the columns. The ultimate load-carrying capacity of RC columns confined with GFRP spirals increased by 0.8%-1.6% with higher ductility, compared to GFRP hoops. Reducing the stirrup spacing may prevent the buckling failure of the longitudinal bars and increase the ductility and load-carrying capacity of the GFRP-RC columns. It has been found that setting the GFRP compressive strength to 35% of the GFRP maximum tensile strength yields a reasonable estimate of ultimate load-carrying capacity of GFRP-RC columns.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Anandakumar Ramaswamy ◽  
Selvamony Chachithanantham ◽  
Seeni Arumugam

This paper deals with the behaviour of basalt fibre reinforced polymer (BFRP) composites retrofitted RCC piles subjected to axial compression loads. Currently the awareness of using FRP increases rapidly in engineering fields and also among public. Retrofitting becomes vital for aged and damaged concrete structures, piles, and so forth, to improve its load carrying capacity and to extend the service life. The load carrying capacity of piles retrofitted with basalt unidirectional fabric was studied experimentally. 15 nos. of RCC end bearing pile elements were cast with same reinforcement for axial compression experiment. Three piles were used as conventional elements, another 3 piles were used as double BFRP wrapped pile elements, and remaining 9 piles were used as retrofitted piles with BFRP double wrapping after preloaded to 30%, 60%, and 90% of ultimate load of conventional element. The effects of retrofitting of RCC pile elements were observed and a mathematical prediction was developed for calculation of retrofitting strength. The stress vs. strain relationship curve, load vs. deformation curve, preloaded elements strength losses are tabulated and plotted. Besides, crack patterns of conventional elements and tearing BFRP wrapped elements were also observed. The BFRP wrapped elements and retrofitted elements withstand more axial compressive load than the conventional elements.


2021 ◽  
Vol 245 ◽  
pp. 112836
Author(s):  
Abdoulaye Sanni Bakouregui ◽  
Hamdy M. Mohamed ◽  
Ammar Yahia ◽  
Brahim Benmokrane

In this paper, 1 group of plain concrete square columns 150×150×600 mm and 11 groups of concrete columns reinforced with glass fiber reinforced polymer (GFRP) were cast and tested, each group contains of 3 specimens. These experiments investigated effect of the main reinforcement ratio, stirrup spacing and contribution of longitudinal GFRP bars on the load carrying capacity of GFRP reinforced concrete (RC) columns. Based on the experiment results, the relationship between load-capacity and reinforcement ratio and the plot of contribution of longitudinal GFRP bars to load-capacity versus the reinforcement ratio were built and analyzed. By increasing the reinforcement ratio from 0.36% to 3.24%, the average ultimate strain in columns at maximum load increases from 2.64% to 75.6% and the load-carrying capacity of GFRP RC columns increases from 3.4% to 25.7% in comparison with the average values of plain concrete columns. Within the investigated range of reinforcement ratio, the longitudinal GFRP bars contributed about 0.72%-6.71% of the ultimate load-carrying capacity of the GFRP RC columns. Meanwhile, with the same configuration of reinforcement, contribution of GFRP bars to load-carrying capacity of GFRP RC columns decreases when increasing the concrete strength. The influence of tie spacing on load-carrying capacity of reinforced columns was also taken into consideration. Additionally, experimental results allow us to propose some modifications on the existing formulas to determine the bearing capacity of the GFRP RC column according to the compressive strength of concrete and GFRP bars.


Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2956
Author(s):  
Hubert Debski ◽  
Sylwester Samborski ◽  
Patryk Rozylo ◽  
Pawel Wysmulski

This study investigates the effect of eccentric compressive load on the stability, critical states and load-carrying capacity of thin-walled composite Z-profiles. Short thin-walled columns made of carbon fiber-reinforced plastic composite material fabricated by the autoclave technique are examined. In experimental tests, the thin-walled structures were compressed until a loss of their load-carrying capacity was obtained. The test parameters were measured to describe the structure’s behavior, including the phenomenon of composite material failure. The post-critical load-displacement equilibrium paths and the acoustic emission signal enabling analysis of the composite material condition during the loading process were measured. The scope of the study also included performing numerical simulations by finite element method to solve the problem of non-linear stability and to describe the phenomenon of composite material damage based on the progressive failure model. The obtained numerical results showed a good agreement with the experimental characteristics of real structures. The numerical results are compared with the experimental findings to validate the developed numerical model.


1994 ◽  
Vol 21 (3) ◽  
pp. 396-403 ◽  
Author(s):  
Murray C. Temple ◽  
Sherief S. S. Sakla

Angles used as web members in trusses are often welded to the chords with unbalanced welds. This is necessary because of space limitations. It is not known what effect such a weld has on the compressive load carrying capacity of an angle. The standards and specification examined allow an unbalanced weld for an angle. The justification for using such a weld is based on research conducted on angles in tension. For these members, it was concluded that an unbalanced weld does not affect the tensile load carrying capacity of the angle. Research results for angles with different weld patterns subjected to compressive loads are not available in the literature. Eighteen tests were conducted on angle compression members with various weld patterns. It was determined that an unbalanced weld is detrimental to the load carrying capacity of an intermediate length angle but is beneficial for a slender angle. Key words: angles, column (structural), compressive resistance, effective length, standards, welds.


Sign in / Sign up

Export Citation Format

Share Document