scholarly journals Tailoring Poly(lactic acid) (PLA) Properties: Effect of the Impact Modifiers EE-g-GMA and POE-g-GMA

Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 136
Author(s):  
Edson Antonio dos Santos Filho ◽  
Carlos Bruno Barreto Luna ◽  
Danilo Diniz Siqueira ◽  
Eduardo da Silva Barbosa Ferreira ◽  
Edcleide Maria Araújo

Poly(ethylene-octene) grafted with glycidyl methacrylate (POE-g-GMA) and ethylene elastomeric grafted with glycidyl methacrylate (EE-g-GMA) were used as impact modifiers, aiming for tailoring poly(lactic acid) (PLA) properties. POE-g-GMA and EE-g-GMA was used in a proportion of 5; 7.5 and 10%, considering a good balance of properties for PLA. The PLA/POE-g-GMA and PLA/EE-g-GMA blends were processed in a twin-screw extruder and injection molded. The FTIR spectra indicated interactions between the PLA and the modifiers. The 10% addition of EE-g-GMA and POE-g-GMA promoted significant increases in impact strength, with gains of 108% and 140%, respectively. These acted as heterogeneous nucleating agents in the PLA matrix, generating a higher crystallinity degree for the blends. This impacted to keep the thermal deflection temperature (HDT) and Shore D hardness at the same level as PLA. By thermogravimetry (TG), the blends showed increased thermal stability, suggesting a stabilizing effect of the modifiers POE-g-GMA and EE-g-GMA on the PLA matrix. Scanning electron microscopy (SEM) showed dispersed POE-g-GMA and EE-g-GMA particles, as well as the presence of ligand reinforcing the systems interaction. The PLA properties can be tailored and improved by adding small concentrations of POE-g-GMA and EE-g-GMA. In light of this, new environmentally friendly and semi-biodegradable materials can be manufactured for application in the packaging industry.

2014 ◽  
Vol 1025-1026 ◽  
pp. 461-465 ◽  
Author(s):  
Sorayut Wongsampanwech ◽  
Pranut Potiyaraj

Poly (lactic acid) or PLA is one of the most promising biodegradable and bio-based materials commercially available for the manufacturing of environmentally friendly plastic products. Although, PLA has high modulus and biodegradable property, its brittleness and low thermal stability are the disadvantages. Several means have been explored so as to overcome this drawback, i.e. copolymerization, addition of some additives as well as blending with other polymers. The polymer blending technique has attracted the most attention because of its simplicity and economical reason. It was reported that the addition of a polyolefin elastomer e.g. poly (ethylene-co-octene) or POE in PLA matrix can effectively improve its brittleness. The aim of this study is thus to investigate the effect of the amount of POE on mechanical properties of the polymer blends. POE was also modified with glycidyl methacrylate in order to improve the compatibility between the two polymers. The results pointed out that the impact strength of PLA markedly increased while tensile and flexural properties of the blends were slightly lower than that of neat PLA. It was also observed that the tensile and flexural properties were slightly higher when the modified POE was used rather than those with unmodified POE which indicated the improved interfacial compatibility between two polymers.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Wei Kit Chee ◽  
Nor Azowa Ibrahim ◽  
Norhazlin Zainuddin ◽  
Mohd Faizal Abd Rahman ◽  
Buong Woei Chieng

Poly(lactic acid) (PLA)/poly(ε-caprolactone) (PCL) blends were prepared via melt blending technique. Glycidyl methacrylate (GMA) was added as reactive compatibilizer to improve the interfacial adhesion between immiscible phases of PLA and PCL matrices. Tensile test revealed that optimum in elongation at break of approximately 327% achieved when GMA loading was up to 3wt%. Slight drop in tensile strength and tensile modulus at optimum ratio suggested that the blends were tuned to be deformable. Flexural studies showed slight drop in flexural strength and modulus when GMA wt% increases as a result of improved flexibility by finer dispersion of PCL in PLA matrix. Besides, incorporation of GMA in the blends remarkably improved the impact strength. Highest impact strength was achieved (160% compared to pure PLA/PCL blend) when GMA loading was up to 3 wt%. SEM analysis revealed improved interfacial adhesion between PLA/PCL blends in the presence of GMA. Finer dispersion and smooth surface of the specimens were noted as GMA loading increases, indicating that addition of GMA eventually improved the interfacial compatibility of the nonmiscible blend.


2005 ◽  
Vol 13 (4) ◽  
pp. 385-394
Author(s):  
Huiyu Bai ◽  
Yong Zhang ◽  
Yinxi Zhang ◽  
Xiangfu Zhang ◽  
Wen Zhou

New toughened poly(butylene terephthalate) (PBT)/bisphenol A polycarbonate (PC) blends were obtained by melt blending with commercial poly(ethylene-co-octene) copolymer (POE), varying the POE content up to 10 wt%, in a twin screw extruder, followed by injection moulding. The influence of POE on the properties of the PBT/PC blends was investigated in terms of mechanical testing, dynamic mechanical thermal (DMTA) analysis, differential scanning calorimetry (DSC), and scanning electronic microscopy (SEM). The results showed that addition of POE led to remarkable increases in the impact strength, elongation at break and Vicat temperature, and a reduction in the tensile strength and flexural properties of PBT/PC blends. The morphology of the blends was observed using SEM and the average diameter of the dispersed phase was determined by image analysis. The critical inter-particle distance for PBT/PC was determined.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Kittithorn Lertphirun ◽  
Kawee Srikulkit

Hydrophobic cellulose/SiO2 composites were prepared. Resultant hydrophobic cellulose/SiO2 composites were melt mixed with PLA using a twin-screw extruder to obtain 10 wt% masterbatch. Again, 10 wt% masterbatch was melt mixed with virgin PLA, resulting in PLA containing hydrophobic cellulose/SiO2 at various contents (1 wt%, 3 wt%, and 5 wt%) using a twin-screw extruder (barrel zone temperature: 150/160/170/180/190°C (die zone)). Injection-molded samples were prepared for mechanical properties evaluation. Results showed that poor mechanical properties found at low percent loadings were associated with a significant depolymerization of masterbatch composition due to twice thermal treatments. Note that 10 wt% masterbatch was subjected to injection molding straight away in a one-step process. Results showed that 10 wt% hydrophobic cellulose/SiO2/PLA composites exhibited mechanical properties equivalent to neat PLA. Importantly, the addition of hydrophobic cellulose/SiO2 at high percent loading could favor landfill degradation of PLA via water absorption ability of cellulose. It was expected that enzymatic hydrolysis of cellulose resulted in the formation of lactic acid and silicic acid which consequently catalyzed the hydrolytic degradation (acid hydrolysis) of PLA. The hydrolytic degradation produced carboxylic acid end group which further accelerated the degradation rate.


RSC Advances ◽  
2018 ◽  
Vol 8 (60) ◽  
pp. 34418-34427 ◽  
Author(s):  
Xianzeng Wang ◽  
Jianguo Mi ◽  
Jie Wang ◽  
Hongfu Zhou ◽  
Xiangdong Wang

Poly(ethylene octene) grafted with glycidyl methacrylate (POE-g-GMA) was employed to improve the rheological and thermal properties, toughness, and foaming behaviors of poly(lactic acid) (PLA) through a chain extension effect.


2019 ◽  
pp. 089270571987667 ◽  
Author(s):  
Carlos Ivan Ribeiro de Oliveira ◽  
Marisa Cristina Guimarães Rocha ◽  
Joaquim Teixeira de Assis ◽  
Ana Lúcia Nazareth da Silva

The aim of this study is to evaluate the effect of some experimental variables such as the content of styrene–ethylene–butylene–styrene (SEBS) and talc, processing conditions and mixing protocol on the properties of polypropylene (PP). To achieve this objective, PP/SEBS blends and PP/SEBS/talc composites were processed in a corotating twin-screw extruder. A masterbatch of PP/talc was prepared before the extrusion of PP/SEBS/talc composites. The morphology of blends and composites was evaluated by scanning electron microscopy, which revealed the dispersion of small rubber droplets in the PP matrix. Moreover, the micrographs also showed that SEBS and talc particles were uniformly dispersed and distributed in the polymer matrix. Results of thermal properties showed that talc had a nucleating effect, which promoted the increase of both PP crystallization temperature and crystallinity degree. The incorporation of talc in PP/SEBS blends led to an expressive increase in the impact resistance by 70% as compared with the reference blend: PP/SEBS 80/20% (w/w). This result reveals that although the PP/SEBS/talc composites showed a separated morphology, the good dispersion and distribution of this mineral filler in the polymers contributed to avoid crack propagation and increase the impact properties. The tensile properties in the elastic region were not significantly affected.


Sign in / Sign up

Export Citation Format

Share Document