scholarly journals Enhanced Low-Frequency Sound Absorption of a Porous Layer Mosaicked with Perforated Resonator

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 223
Author(s):  
Xin Li ◽  
Bilong Liu ◽  
Qianqian Wu

A composite structure composed of a porous-material layer mosaicked with a perforated resonator is proposed to improve the low-frequency sound absorption of the porous layer. This structure is investigated in the form of a porous-material matrix (PM) and a perforated resonator (PR), and the PR is a thin perforated plate filled with porous material in its back cavity. Theoretical and numerical models are established to predict the acoustic impedance and sound absorption coefficient of the proposed structure, and two samples made of polyurethane and melamine, respectively, are tested in an impedance tube. The predicted results are consistent with that of the measured. Compared with a single porous layer with the same thickness, the results show that the designed structure provides an additional sound absorption peak at low frequencies. The proposed structure is compact and has an effective absorption bandwidth of more than two octaves especially below the frequency corresponding to 1/4 wavelength. A comparison is also made between the sound absorption coefficients of the proposed structure and a classical micro-perforated plate (MPP), and the results reveal equivalent acoustic performance, suggesting that it can be used as an alternative to the MPP for low–mid frequency sound absorption. Moreover, the influences of the main parameters on the sound absorption coefficient of PPCS are also analyzed, such as the hole diameter, area ratio, flow resistance, and porous-material thickness in the PR. The mechanism of sound absorption is discussed through the surface acoustic impedance and the distributions of particle velocity and sound pressure at several specific frequencies. This work provides a new idea for the applications of the thin porous layer in low- and medium-frequency sound absorption.

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Xiyue Ma ◽  
Kean Chen ◽  
Lei Wang ◽  
Yang Liu

This paper presents an analytical investigation on constructing an error sensing strategy of a new type of active MPPA. The proposed active MPPA is composed of MPP, air cavity, and point force-controlled backing panel, which can actively improve the low-frequency sound absorption of the MPPA. Constructing an appropriate error sensing strategy for obtaining an error signal that is highly correlated with the sound absorption coefficient of the active MPPA is a key problem encountered in practical implementation. The theoretical model of the active MPPA is firstly established using the modal analysis approach. Then, the active control performance and surface impedance characteristics in the controlled condition are analyzed in detail. Finally, the error sensing strategy of the active MPPA is constructed by measuring the surface average impedance ratio with an acoustic vector sensor (AVS). Simulation results show that, due to the antisymmetric property of the vibration of the backing panel on the resonant frequency, the surface impedance of the active MPPA after control also has symmetry or antisymmetry properties. Hence, the surface average impedance ratio of the active MPPA can be measured by using the limited number of acoustic vector sensors (sensing pressure and particle velocity). This variable is also highly correlated with the sound absorption coefficient of the active MPPA and thus can be used to construct the cost function (error signal). The active control result obtained by the proposed error sensing strategy is in good agreement with the theoretically optimal result, which validates the feasibility of this approach.


Wood Research ◽  
2021 ◽  
Vol 66 (3) ◽  
pp. 341-352
Author(s):  
Haiyan Fu ◽  
Xinyue Zhao ◽  
Patrick Adjei ◽  
Zheng Wang ◽  
Xiaoli Wu

Based on acoustic spiral metasurface, a spiral structural layer was designed to apply to timber construction interior wall. The sound absorption coefficient was measured by impedance tube method and compared with Helmholtz resonance structural layer, solid structural layer and air layer in traditional wall. The results show that the combination of the spiral structural layer and the wall can optimize the sound absorption performance of the wall in the medium and low frequency. Without reducing the overall sound-absorbing performance of the wall, can achieve perfect sound absorption in some medium and low frequency sound bands.


2018 ◽  
Vol 89 (16) ◽  
pp. 3342-3361 ◽  
Author(s):  
Tao Yang ◽  
Ferina Saati ◽  
Kirill V Horoshenkov ◽  
Xiaoman Xiong ◽  
Kai Yang ◽  
...  

This study presents an investigation of the acoustical properties of multi-component polyester nonwovens with experimental and numerical methods. Fifteen types of nonwoven samples made with staple, hollow and bi-component polyester fibers were chosen to carry out this study. The AFD300 AcoustiFlow device was employed to measure airflow resistivity. Several models were grouped in theoretical and empirical model categories and used to predict the airflow resistivity. A simple empirical model based on fiber diameter and fabric bulk density was obtained through the power-fitting method. The difference between measured and predicted airflow resistivity was analyzed. The surface impedance and sound absorption coefficient were determined by using a 45 mm Materiacustica impedance tube. Some widely used impedance models were used to predict the acoustical properties. A comparison between measured and predicted values was carried out to determine the most accurate model for multi-component polyester nonwovens. The results show that one of the Tarnow model provides the closest prediction to the measured value, with an error of 12%. The proposed power-fitted empirical model exhibits a very small error of 6.8%. It is shown that the Delany–Bazley and Miki models can accurately predict surface impedance of multi-component polyester nonwovens, but the Komatsu model is less accurate, especially at the low-frequency range. The results indicate that the Miki model is the most accurate method to predict the sound absorption coefficient, with a mean error of 8.39%.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Yufan Tang ◽  
Shuwei Ren ◽  
Han Meng ◽  
Fengxian Xin ◽  
Lixi Huang ◽  
...  

Abstract A hybrid acoustic metamaterial is proposed as a new class of sound absorber, which exhibits superior broadband low-frequency sound absorption as well as excellent mechanical stiffness/strength. Based on the honeycomb-corrugation hybrid core (H-C hybrid core), we introduce perforations on both top facesheet and corrugation, forming perforated honeycomb-corrugation hybrid (PHCH) to gain super broadband low-frequency sound absorption. Applying the theory of micro-perforated panel (MPP), we establish a theoretical method to calculate the sound absorption coefficient of this new kind of metamaterial. Perfect sound absorption is found at just a few hundreds hertz with two-octave 0.5 absorption bandwidth. To verify this model, a finite element model is developed to calculate the absorption coefficient and analyze the viscous-thermal energy dissipation. It is found that viscous energy dissipation at perforation regions dominates the total energy consumed. This new kind of acoustic metamaterials show promising engineering applications, which can serve as multiple functional materials with extraordinary low-frequency sound absorption, excellent stiffness/strength and impact energy absorption.


2018 ◽  
Vol 140 (3) ◽  
Author(s):  
Xuezhi Zhu ◽  
Zhaobo Chen ◽  
Yinghou Jiao ◽  
Yanpeng Wang

In order to broaden the sound absorption bandwidth of a perforated panel in the low frequency range, a lightweight membrane-type resonator is installed in the back cavity of the perforated panel to combine into a compound sound absorber (CSA). Because of the great flexibility, the membrane-type resonator can be vibrated easily by the incident sound waves passing through the holes of the perforated panel. In the low frequency range, the membrane-type resonator and the perforated panel constitute a two degrees-of-freedom (DOF)-resonant type sound absorption system, which generates two sound absorption peaks. By tuning the parameters of the membrane type resonator, a wide frequency band having a large sound absorption coefficient can be obtained. In this paper, the sound absorption coefficient of CSA is derived analytically by combining the vibration equation of the membrane-type resonator with the acoustic impedance equation of the perforated panel. The influences of the parameters of the membrane-type resonator on the sound absorption performance of the CSA are numerically analyzed. Finally, the wide band sound absorption capacity of the CSA is validated by the experimental test.


2012 ◽  
Vol 2012.87 (0) ◽  
pp. _13-23_
Author(s):  
Nobuo NAMAI ◽  
Toshimitsu TANAKA ◽  
Takahiro SAKAYORI ◽  
Takumi MATSUMURA ◽  
Shinichi KINOSHITA ◽  
...  

2020 ◽  
Vol 15 ◽  
pp. 155892502091086
Author(s):  
Lihua Lyu ◽  
Jing Lu ◽  
Jing Guo ◽  
Yongfang Qian ◽  
Hong Li ◽  
...  

In order to find a reasonable way to use the waste corn husk, waste degummed corn husk fibers were used as reinforcing material in one type of composite material. And polylactic acid particles were used as matrix material. The composite materials were prepared by mixing and hot-pressing process, and they were processed into the micro-slit panel. Then, the multi-layer structural sound absorption composite materials were prepared sequentially by micro-slit panel, air cavity, and flax felt. Finally, the sound absorption properties of the multi-layer structural composite materials were studied by changing flax felt thickness, air cavity depth, slit rate, and thickness of micro-slit panel. As the flax felt thickness varied from 0 to 10 mm in 5 mm increments, the peak of sound absorption coefficient shifted to low frequency. The sound absorption coefficient in the low frequency was improved with the air cavity depth varied from 0 to 10 mm in 5 mm increments. With the slit rate increased from 3% to 7% in 2% increments, the peak of sound absorption coefficient shifted to high frequency. With the thickness of micro-slit panel increased from 2 to 6 mm in 2 mm increments, the sound absorption bandwidth was broaden, and the peak of sound absorption coefficient was increased and shifted to low frequency. Results showed that the highest sound absorption coefficient of the multi-layer structural composite materials was about 1 under the optimal process conditions.


2018 ◽  
Vol 933 ◽  
pp. 55-60
Author(s):  
Yong Zhang ◽  
Zong Min Chen ◽  
Zhao Jun Wang ◽  
Jing Hui Liu

Three kinds of aluminum foam of different pore sizes were prepared with a tailor-made low-pressure infiltration device. CaO granules in three sizes (0.45~0.71mm,0.71~090mm and 1.25~1.60mm) were selected as infiltrating agents. The processing parameters were as follows: granules preheat temperature of 700 °C,infiltration pressure of 0.04 MPa and aluminum liquid temperature of 720 °C. In order to improve the removal performance and porosity, mixture of CaO powder of finer than 300 mesh and pure alcohol was mixed uniformly with granules, which made the slurry-coating granules conformal contacts rather than point contacts as in the traditional infiltration method. The testing results show that among all aluminum foam specimens tested with transfer function methods, two kinds have high sound absorption coefficient in low frequency (250~1600Hz).


2014 ◽  
Vol 938 ◽  
pp. 170-175 ◽  
Author(s):  
R. Gayathri ◽  
R. Vasanthakumari

Lot of research is going on to develop materials suitable for absorbing sound and reducing noise. By virtue of their superior vibration damping capability and attractive characteristics such as visco elasticity, simple processing and commercial availability, polyurethane foams are extensively applied not only in automotive seats but also in various acoustical parts. However, the sound absorption coefficient of polyurethane foams is high (0.8 1.0) in high frequencies in the range 300 to 10000Hz while it is found to be low (0 to 0.5) at low frequencies (10 to 200 Hz). In this study new polyurethane based porous composites were synthesized by in situ foam rising polymerization of polyol and diisocyanate in the presence of fillers such as nanosilica (NS) and nanoclay (NC). The effect of these fillers at various concentrations up to 2% was studied for sound absorption characteristics in the frequency range 100-200Hz. Sound absorption coefficient was determined using standing wave impedance tube method. The sound absorption coefficient of filled PU foams increases from 0.5 to 0.8 with frequency increase from 100 to 200 Hz at higher content of the nanofillers employed. This research work is further extended to study the sound absorption capacity of unfilled PU foam with varying thickness and also hybrid foams with woven glass (GFC) and polyester cloth (PEC). The unfilled foam with 60mm of thickness gives sound absorption value same as that of 15mm of filled foam. Further enhanced absorption value is achieved with PU/NS-GFC hybrid. The results obtained are explained based on the porosity of composite structure and foam cell size.Key words Polyurethane foam, sound absorption coefficient, nanosilica, nanoclay, low frequency sound.


Sign in / Sign up

Export Citation Format

Share Document