scholarly journals Physical and Mechanical Properties of Tilapia Scale Hydroxyapatite-Filled High-Density Polyethylene Composites

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 251
Author(s):  
C. N. Aiza Jaafar ◽  
I. Zainol ◽  
M. I. Izyan Khairani ◽  
T. T. Dele-Afolabi

The effects of filler loading and silane coupling agent on the properties of hydroxyapatite (HAp)-filled high density polyethylene (HDPE) composites have been studied. The (HAp) powder was successfully produced from tilapia scales using the spray drying process utilized to prepare the HDPE/HAp composites. The FTIR peaks for the untreated HDPE/30HAp composite corresponded to the functional groups of HDPE (C-CH3) and –CH2 and HAp (PO4−3 and O-H). The FTIR spectrum for the silane-treated composite showed that the C=O and silanol groups were eliminated, which strongly confirms the chemical interaction between the HAp fillers and the HDPE matrix. The developed composites demonstrated enhanced mechanical performance, and in particular the treated HDPE/30HAp-S composite exhibited superior tensile strength, Young’s modulus and flexural modulus of 28.26 MPa, 1272 MPa and 796 MPa, respectively. In vitro cytotoxicity analysis showed that the developed composites were non-toxic and have great potential to be used for biomedical application.

2019 ◽  
Vol 28 (4) ◽  
pp. 285-296
Author(s):  
C Balaji Ayyanar ◽  
K Marimuthu

The high-density polyethylene (HDPE) and fish scale particulates are in the ratio of 10:3 (matrix 100 g:filler 30 g) which is filled and blended with thermoplastic composites and are then fabricated by the injection molding machine. In this work, the thermal energy absorption is obtained as 103.9 J g−1 that melts onset temperature at 121.75°C and melts peak temperature at 129.98°C of the specimen using differential scanning calorimetry instrument. A gradual mass degradation and decomposition of the prepared samples were analyzed from the thermogravimetric analysis. Evaluation of microstructure, surface morphology, and elemental analysis was carried out using field emission scanning electron microscope. The presence of functional groups in the polymeric materials was identified using Fourier transform infrared spectroscopy. The cytotoxicity testing of composites has been carried out using MG 63 cell line. In these studies, five different volumes of liquid extract of the prepared specimen having different concentrations (10, 20, 30, 40, and 50 μL) were allowed to interact with fresh cell culture medium for 24 h. The cell viability, cell morphology, and the levels of cytotoxicity of the composite specimen were studied as per ISO 10993:12 and ISO 10993:5 test standards. It was found that the natural fiber filled composite showed none to slight cytotoxic reactivity to MG-63 cells after 24 h contact. The cytotoxicity level of fish scale particulate filled HDPE composite material was compared with standard reactivity level and it was confirmed to have low toxic level (none to slight).


2022 ◽  
Vol 951 (1) ◽  
pp. 012045
Author(s):  
A M Zakaria ◽  
M A Jamaludin ◽  
M N Zakaria ◽  
R Hassan ◽  
S A Bahari

Abstract This article presents the application of plantation waste materials (leaves, branches and trunks) of Azadirachta excelsa (Sentang) tree in order to evaluate and compare their suitability as reinforcement and filler for high density polyethylene (HDPE) thermoplastics. The aim of the study was to investigate the effect of different types of Azadirachta excelsa (Sentang) trunks flour, branches flour and leaves flour fillers on the mechanical and physical properties of HDPE composite. The composite samples were produced using 25%, 35% and 45% by weight of flour filler loading and 2% coupling agent (maleic anhydride) using a twin-screw extruder, followed by injection molding process. The flexural modulus and tensile strength of the composite filled with trunk flour were not significantly different with the composite-filled branch flour. However, there is a significant difference between composite-filled leaf flour when compared to both composite-filled trunk flour and composite-filled branch flours. Overall, composite samples with trunk flour show better mechanical properties, while composite samples with lower filler loadings of 25% exhibit better dimensional stability compared to the other such as 35% and 45% filler loadings. The study also indicated that composite filled with leaf, branch and trunk flours had better mechanical strength than virgin HDPE.


2020 ◽  
pp. 096739112098155
Author(s):  
C Balaji Ayyanar ◽  
K Marimuthu ◽  
B Gayathri ◽  
Sankarrajan

Hydroxyapatite (HAp) is the major inorganic component of natural bone which exhibits better biocompatibility with various kinds of cells and tissues, making it an ideal candidate for dental and orthopedic applications. The naturally extracted HAp (Ca10(PO4)6(OH)2) from fish scale and seashell is exactly matched with the chemical composition of bone minerals. Nowadays, soft chemistry is used for the synthesis of bioceramics such as HAp. This is a chemical route that yields more homogeneous solid-state materials. In this study, the extracted powder from fish scale and seashell was heated in the furnace and maintained at 700°C for 3 hours and the powder was naturally cooled. The derived CaO was used for preparing HAp by the microwave irradiation techniques. The HAp was filled with High-Density Polyethylene (HDPE) in the ratio of 10:3 (Matrix 100 g: Filler 30 g) and composite was fabricated by the injection molding. The functional groups present in the HAp-HDPE specimen was identified using Fourier Transform Infrared (FTIR) spectroscopy analysis. The thermal stability of 30 wt. % HAp-HDPE composite was analyzed using Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). In vitro cytotoxicity studies were carried out using MG63 cell line. In these studies, five different volumes of liquid extracts of the prepared HAp-HDPE specimen having different concentrations (10, 20, 30, 40, and 50 μl) were allowed to interact with fresh cell culture medium for 24 hours. The cell morphology, cell viability, and the levels of cytotoxicity of the composite specimen were studied as per 10993:12, and ISO 10993:5 test standards.


2021 ◽  
Vol 9 (1) ◽  
pp. 248-256
Author(s):  
J.A. dos Santos ◽  
R.C. Tucunduva ◽  
J.R.M. D’Almeida

Polymer pipes are being widely used by many industrial segments. Although not affected by corrosion, the mechanical performance of these pipes can be reduced due to exposure to temperature, UV radiation and by contact with various fluids. Depending on the deterioration process, embrittlement or plasticization may occur, and the service life of the pipe can be severely reduced. In this work, the combined action of temperature and water upon the mechanical performance of polyamide 12 and high-density polyethylene pipes is evaluated. Destructive and non-destructive techniques were used and the performance of both materials was compared. Both polymers were platicized by the effect of water. However, for high density polyethylene the effect of temperature was more relevant than for polyamide. This behavior was attributed to the dependence of the free volume with the markedly different glass transition temperature of the polymers and the temperatures of testing.


Polymers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1166 ◽  
Author(s):  
Pavlo Bekhta ◽  
Ján Sedliačik

Thermoplastic films exhibit good potential to be used as adhesives for the production of veneer-based composites. This work presents the first effort to develop and evaluate composites based on alder veneers and high-density polyethylene (HDPE) film. The effects of hot-pressing temperature (140, 160, and 180 °C), hot-pressing pressure (0.8, 1.2, and 1.6 MPa), hot-pressing time (1, 2, 3, and 5 min), and type of adhesives on the physical and mechanical properties of alder plywood panels were investigated. The effects of these variables on the core-layer temperature during the hot pressing of multiplywood panels using various adhesives were also studied. Three types of adhesives were used: urea–formaldehyde (UF), phenol–formaldehyde (PF), and HDPE film. UF and PF adhesives were used for the comparison. The findings of this work indicate that formaldehyde-free HDPE film adhesive gave values of mechanical properties of alder plywood panels that are comparable to those obtained with traditional UF and PF adhesives, even though the adhesive dosage and pressing pressure were lower than when UF and PF adhesives were used. The obtained bonding strength values of HDPE-bonded alder plywood panels ranged from 0.74 to 2.38 MPa and met the European Standard EN 314-2 for Class 1 plywood. The optimum conditions for the bonding of HDPE plywood were 160 °C, 0.8 MPa, and 3 min.


2020 ◽  
pp. 096739112093461
Author(s):  
WVWH Wickramaarachchi ◽  
S Walpalage ◽  
SM Egodage

Blending of two or more polymers generates a new material, which is more cost-effective than a newly synthesised material. Blending-type thermoplastic elastomer (TPE) is produced by melt-mixing of a thermoplastic with a rubber. These blends have high demands associated with excellent property combinations of the parent materials. Particulate fillers are used in the rubber and plastic industry for property modification and cost reduction. In this work, six particulate fillers, namely, calcium carbonate, barium sulphate (BaSO4), kaolin, talc, Snobrite clay and dolomite were used to develop natural rubber (NR)/high-density polyethylene (HDPE) TPE blends, and the most suitable filler for roofing application was identified. A series of NR/HDPE 20/80 blends were prepared by varying filler loading from 10 phr to 30 phr at 10 phr intervals using a Plasticorder. Mechanical properties, such as tensile strength, hardness, impact strength and tear strength, and gel content of the blends were investigated. The addition of talc, dolomite and kaolin to NR/HDPE blend showed reduced impact strength, which is the most important property for a roofing application. The other three fillers showed improved impact strength at specific loadings. The blend with 30 phr of BaSO4 was identified as the best blend, as per the overall performance.


2005 ◽  
Vol 75A (1) ◽  
pp. 14-22 ◽  
Author(s):  
S. SH. Homaeigohar ◽  
M. A. Shokrgozar ◽  
A. Yari Sadi ◽  
A. Khavandi ◽  
J. Javadpour ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document