scholarly journals Productive Performance of Mexican Creole Pullets and Immature Males Fed Different Levels of Metabolizable Energy and Crude Protein

Poultry ◽  
2022 ◽  
Vol 1 (1) ◽  
pp. 3-13
Author(s):  
Miguel Ángel Matus-Aragón ◽  
Josafhat Salinas-Ruiz ◽  
Fernando González-Cerón ◽  
Eliseo Sosa-Montes ◽  
Arturo Pro-Martínez ◽  
...  

Mexican Creole birds are a poorly researched genetic resource whose nutritional requirements are unknown. The objective was to evaluate the productive performance and nutrient use efficiency of Mexican Creole birds, using four diets with different concentrations of metabolizable energy (EM, MJ/kg) and crude protein (PC, g/kg). The experimental diets with constant ME/CP ratios equal to 0.06, were: 12.55/200, 11.92/190, 11.30/180 and 10.67/170. One hundred and ninety-two 12-week-old creole birds (96 males and 96 females) were randomly distributed amongst the diets (24 males and 24 females each). Due to the diet × sex interaction, males fed the 10.67/170 diet had higher feed intake, and males under 10.67/170, 11.92/190 and 11.30/180 had higher final body weight and weight gain than the other birds. Feed conversion ratio was lower in birds with diets 12.55/200 and 11.92/190. Total body fat retention was higher in females with the diet 12.55/200, 11.92/190 and 11.30/180. In conclusion, males with the 10.67/170 (lowest ME and CP) diet showed a high productive performance, without compromising carcase yield and body composition, while females with all diets did not show differences in productive performance, carcass yield and body composition.

1976 ◽  
Vol 86 (2) ◽  
pp. 411-423 ◽  
Author(s):  
E. R. Ørskov ◽  
I. McDonald ◽  
D. A. Grubb ◽  
K. Pennie

SummaryAbout sixty male lambs were fed ad libitum from 6 weeks of age on low- or highprotein diets based on barley or barley and fishmeal and containing respectively 120 and 200 g crude protein/kg dry matter. Some lambs were changed from one diet to the other when they reached 28 kg live weight. All were slaughtered as they attained a predetermined series of live weights ranging from 20 to 75 kg.Throughout the experiment, rates of live-weight gain were substantially higher with the high-protein (HP) than with the low-protein (LP) diet, but were highest after a change from low to high protein (LHP). The feed consumption of the LHP lambs did not exceed that of the HP lambs, but the former showed a substantial superiority in feed conversion ratio at the same live weight.At similar empty body weights, the LP lambs contained more fat and less water in the empty body than the HP lambs. Although the percentage differences decreased at higher weights, differences were still apparent at 70 kg live weight.The LHP lambs showed dramatic and rapid changes in body composition, particularly in water and fat content. By 40 kg live weight, their composition approached that of the HP lambs.The ratio of water to protein was consistently lower for the LP lambs. The ratio of protein to ash also differed between LP and HP lambs. It was initially highest for the HP lambs, at about 40 kg live weight it was the same, and at 70 kg live weight it was highest for the LP lambs.The ash content of the LHP lambs remained virtually constant during the period of rapid growth and rapid deposition of water, protein and fat which took place immediately after the change of diet, and only showed compensatory increases after 35 kg live weight. This finding was supported by the pattern of changes in weight and specific gravity of the femur and tibia + fibula.Use was made of separate relationships between live weight and body composition for the LP, HP and LHP lambs to estimate rates of accretion of crude protein, fat and water in the empty body. There was a particularly striking increase in the rate of accretion of water immediately following the change of diet. There was an increase in the water content of empty-body gain and a reduction in the ratio of gain in fat to gain in protein.Derived estimates of the ratio of metabolizable energy intake above maintenance to the energy content of empty-body gain gave some suggestion of an improvement in efficiency of utilization of metabolizable energy for gain following the change from low to high protein. It is concluded however that the improvement in food conversion ratio following the change is attributable mostly to difference in the composition of gain.


EDIS ◽  
2020 ◽  
Vol 2020 (5) ◽  
Author(s):  
Mary Dixon ◽  
Guodong Liu

Tomato is in high demand because of its taste and health benefits. In Florida, tomato is the number one vegetable crop in terms of both acreage and value. Because of its high value and wide acreage, it is important for tomato production to be efficient in its water and nutrient use, which may be improved through fertigation practices. Therefore, the objective of this new 7-page article is to disseminate research-based methods of tomato production utilizing fertigation to enhance yield and nutrient use efficiency. Written by Mary Dixon and Guodong Liu, and published by the UF/IFAS Horticultural Sciences Department.https://edis.ifas.ufl.edu/hs1392


2018 ◽  
Vol 102 (4) ◽  
pp. 8-10
Author(s):  
Fernando García ◽  
Andrés Grasso ◽  
María González Sanjuan ◽  
Adrián Correndo ◽  
Fernando Salvagiotti

Trends over the past 25 years indicate that Argentina’s growth in its grain crop productivity has largely been supported by the depletion of the extensive fertility of its Pampean soils. Long-term research provides insight into sustainable nutrient management strategies ready for wide-scale adoption.


2021 ◽  
Vol 192 ◽  
pp. 103181
Author(s):  
Jagadish Timsina ◽  
Sudarshan Dutta ◽  
Krishna Prasad Devkota ◽  
Somsubhra Chakraborty ◽  
Ram Krishna Neupane ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 959
Author(s):  
Arshad Jalal ◽  
Fernando Shintate Galindo ◽  
Eduardo Henrique Marcandalli Boleta ◽  
Carlos Eduardo da Silva Oliveira ◽  
André Rodrigues dos Reis ◽  
...  

Enrichment of staple food with zinc (Zn) along with solubilizing bacteria is a sustainable and practical approach to overcome Zn malnutrition in human beings by improving plant nutrition, nutrient use efficiency, and productivity. Common bean (Phaseolus vulgaris L.) is one of a staple food of global population and has a prospective role in agronomic Zn biofortification. In this context, we evaluated the effect of diazotrophic bacterial co-inoculations (No inoculation, Rhizobium tropici, R. tropici + Azospirillum brasilense, R. tropici + Bacillus subtilis, R. tropici + Pseudomonas fluorescens, R. tropici + A. brasilense + B. subtilis, and R. tropici + A. brasilense + P. fluorescens) in association with soil Zn application (without and with 8 kg Zn ha−1) on Zn nutrition, growth, yield, and Zn use efficiencies in common bean in the 2019 and 2020 crop seasons. Soil Zn application in combination with R. tropici + B. subtilis improved Zn accumulation in shoot and grains with greater shoot dry matter, grain yield, and estimated Zn intake. Zinc use efficiency, recovery, and utilization were also increased with co-inoculation of R. tropici + B. subtilis, whereas agro-physiological efficiency was increased with triple co-inoculation of R. tropici + A. brasilense + P. fluorescens. Therefore, co-inoculation of R. tropici + B. subtilis in association with Zn application is recommended for biofortification and higher Zn use efficiencies in common bean in the tropical savannah of Brazil.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 643
Author(s):  
Gaia Santini ◽  
Natascia Biondi ◽  
Liliana Rodolfi ◽  
Mario R. Tredici

Cyanobacteria can be considered a promising source for the development of new biostimulants as they are known to produce a variety of biologically active molecules that can positively affect plant growth, nutrient use efficiency, qualitative traits of the final product, and increase plant tolerance to abiotic stresses. Moreover, the cultivation of cyanobacteria in controlled and confined systems, along with their metabolic plasticity, provides the possibility to improve and standardize composition and effects on plants of derived biostimulant extracts or hydrolysates, which is one of the most critical aspects in the production of commercial biostimulants. Faced with these opportunities, research on biostimulant properties of cyanobacteria has undergone a significant growth in recent years. However, research in this field is still scarce, especially as regards the number of investigated cyanobacterial species. Future research should focus on reducing the costs of cyanobacterial biomass production and plant treatment and on identifying the molecules that mediate the biostimulant effects in order to optimize their content and stability in the final product. Furthermore, the extension of agronomic trials to a wider number of plant species, different application doses, and environmental conditions would allow the development of tailored microbial biostimulants, thus facilitating the diffusion of these products among farmers.


2019 ◽  
Vol 7 (3) ◽  
pp. 368-377 ◽  
Author(s):  
Zilhas Ahmed Jewel ◽  
Jauhar Ali ◽  
Yunlong Pang ◽  
Anumalla Mahender ◽  
Bart Acero ◽  
...  

2007 ◽  
Vol 62 (1) ◽  
pp. 1-12 ◽  
Author(s):  
C. L. Marley ◽  
R. Fychan ◽  
M. D. Fraser ◽  
R. Sanderson ◽  
R. Jones

Sign in / Sign up

Export Citation Format

Share Document