scholarly journals Numerical Investigation of the Performance, Hydrodynamics, and Free-Surface Effects in Unsteady Flow of a Horizontal Axis Hydrokinetic Turbine

Processes ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 69
Aldo Benavides-Morán ◽  
Luis Rodríguez-Jaime ◽  
Santiago Laín

This paper presents computational fluid dynamics (CFD) simulations of the flow around a horizontal axis hydrokinetic turbine (HAHT) found in the literature. The volume of fluid (VOF) model implemented in a commercial CFD package (ANSYS-Fluent) is used to track the air-water interface. The URANS SST k-ω and the four-equation Transition SST turbulence models are employed to compute the unsteady three-dimensional flow field. The sliding mesh technique is used to rotate the subdomain that includes the turbine rotor. The effect of grid resolution, time-step size, and turbulence model on the computed performance coefficients is analyzed in detail, and the results are compared against experimental data at various tip speed ratios (TSRs). Simulation results at the analyzed rotor immersions confirm that the power and thrust coefficients decrease when the rotor is closer to the free surface. The combined effect of rotor and support structure on the free surface evolution and downstream velocities is also studied. The results show that a maximum velocity deficit is found in the near wake region above the rotor centerline. A slow wake recovery is also observed at the shallow rotor immersion due to the free-surface proximity, which in turn reduces the power extraction.

Xue Guan Song ◽  
Chao Yong Zong ◽  
Feng Jie Zheng

Abstract Configuration of piping-pressure safety valve (PPSV) is widely used but may sometimes show instabilities, which should be avoided or reduced. For exploring the cause of these instabilities, Computational Fluid Dynamics (CFD) provides a powerful tool that can be used not only to reproduce the system-level responses, but also to get the details of the local flows. However, the results of CFD simulations are usually sensitive to their model settings, thus, to ensure accuracy, effects of certain critical model settings (such as time-step size and turbulence model) on transient simulations should be determined. In this paper, a 2-D axisymmetric mesh model is developed first, which can be used to predict the dynamic responds of a PPSV system. With this model, three levels of time-steps are tested. The results indicate that the time-step of 1e−5 is a reasonable choice for transient simulations of the PPSV system. After that, a total of four two-equation turbulence models are used for transient simulations. The results indicate that the SST (Shear stress transport) k-omega model produce the closest results to the experiments. After that, the accuracy of the developed CFD model (with 1e−5s time-step and SST k-omega setting) is verified by experimental tests. The results indicate that the developed CFD model can accurately reproduce the dynamic responds of the PPSV system. Outcomes obtained in this paper can not only provide a reference for the transient CFD model development, but also verify the applicability and high accuracy of 2-D axisymmetric CFD models in PPSV dynamics prediction.

2020 ◽  
Vol 27 (4) ◽  
pp. 26-35
Yuxin Zhang ◽  
Xiao-ping Wu ◽  
Ming-yan Lai ◽  
Guo-ping Zhou ◽  
Jie Zhang

AbstractThe propeller cavitation not only affects the propulsive efficiency of a ship but also can cause vibration and noise. Accurate predictions of propeller cavitation are crucial at the design stage. This paper investigates the feasibility of the Reynolds-averaged Navier–Stokes (RANS) method in predicting propeller cavitation in behind-hull conditions, focusing on four aspects: (i) grid sensitivity; (ii) the time step effect; (iii) the turbulence model effect; and (iv) ability to rank two slightly different propellers. The Schnerr-Sauer model is adopted as the cavitation model. A model test is conducted to validate the numerical results. Good agreement on the cavitation pattern is obtained between the model test and computational fluid dynamics. Two propellers are computed, which have similar geometry but slightly different pitch ratios. The results show that RANS is capable of correctly differentiating the cavitation patterns between the two propellers in terms of the occurrence of face cavitation and the extent of sheet cavitation; moreover, time step size is found to slightly affect sheet cavitation and has a significant impact on the survival of the tip vortex cavitation. It is also observed that grid refinement is crucial for capturing tip vortex cavitation and the two-equation turbulence models used – realizable k-ε and shear stress transport (SST) k-ω – yield similar cavitation results.

2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
S. S. Ravindran

Micropolar fluid model consists of Navier-Stokes equations and microrotational velocity equations describing the dynamics of flows in which microstructure of fluid is important. In this paper, we propose and analyze a decoupled time-stepping algorithm for the evolutionary micropolar flow. The proposed method requires solving only one uncoupled Navier-Stokes and one microrotation subphysics problem per time step. We derive optimal order error estimates in suitable norms without assuming any stability condition or time step size restriction.

Ethan Corle ◽  
Matthew Floros ◽  
Sven Schmitz

The methods of using the viscous vortex particle method, dynamic inflow, and uniform inflow to conduct whirl-flutter stability analysis are evaluated on a four-bladed, soft-inplane tiltrotor model using the Rotorcraft Comprehensive Analysis System. For the first time, coupled transient simulations between comprehensive analysis and a vortex particle method inflow model are used to predict whirl-flutter stability. Resolution studies are performed for both spatial and temporal resolution in the transient solution. Stability in transient analysis is noted to be influenced by both. As the particle resolution is refined, a reduction in simulation time-step size must also be performed. An azimuthal time step size of 0.3 deg is used to consider a range of particle resolutions to understand the influence on whirl-flutter stability predictions. Comparisons are made between uniform inflow, dynamic inflow, and the vortex particle method with respect to prediction capabilities when compared to wing beam-bending frequency and damping experimental data. Challenges in assessing the most accurate inflow model are noted due to uncertainty in experimental data; however, a consistent trend of increasing damping with additional levels of fidelity in the inflow model is observed. Excellent correlation is observed between the dynamic inflow predictions and the vortex particle method predictions in which the wing is not part of the inflow model, indicating that the dynamic inflow model is adequate for capturing damping due to the induced velocity on the rotor disk. Additional damping is noted in the full vortex particle method model, with the wing included, which is attributed to either an interactional aerodynamic effect between the rotor and the wing or a more accurate representation of the unsteady loading on the wing due to induced velocities.

Jesús Cardenal ◽  
Javier Cuadrado ◽  
Eduardo Bayo

Abstract This paper presents a multi-index variable time step method for the integration of the equations of motion of constrained multibody systems in descriptor form. The basis of the method is the augmented Lagrangian formulation with projections in index-3 and index-1. The method takes advantage of the better performance of the index-3 formulation for large time steps and of the stability of the index-1 for low time steps, and automatically switches from one method to the other depending on the required accuracy and values of the time step. The variable time stepping is accomplished through the use of an integral of motion, which in the case of conservative systems becomes the total energy. The error introduced by the numerical integrator in the integral of motion during consecutive time steps provides a good measure of the local integration error, and permits a simple and reliable strategy for varying the time step. Overall, the method is efficient and powerful; it is suitable for stiff and non-stiff systems, robust for all time step sizes, and it works for singular configurations, redundant constraints and topology changes. Also, the constraints in positions, velocities and accelerations are satisfied during the simulation process. The method is robust in the sense that becomes more accurate as the time step size decreases.

2021 ◽  
Seyhan Emre Gorucu ◽  
Vijay Shrivastava ◽  
Long X. Nghiem

Abstract An existing equation-of-state compositional simulator is extended to include proppant transport. The simulator determines the final location of the proppant after fracture closure, which allows the computation of the permeability along the hydraulic fracture. The simulation then continues until the end of the production. During hydraulic fracturing, proppant is injected in the reservoir along with water and additives like polymers. Hydraulic fracture gets created due to change in stress caused by the high injection pressure. Once the fracture opens, the bulk slurry moves along the hydraulic fracture. Proppant moves at a different speed than the bulk slurry and sinks down by gravity. While the proppant flows along the fracture, some of the slurry leaks off into the matrix. As the fracture closes after injection stops, the proppant becomes immobile. The immobilized proppant prevents the fracture from closing and thus keeps the permeability of the fracture high. All the above phenomena are modelled effectively in this new implementation. Coupled geomechanics simulation is used to model opening and closure of the fracture following geomechanics criteria. Proppant retardation, gravitational settling and fluid leak-off are modeled with the appropriate equations. The propped fracture permeability is a function of the concentration of immobilized proppant. The developed proppant simulation feature is computationally stable and efficient. The time step size during the settling adapts to the settling velocity of the proppants. It is found that the final location of the proppants is highly dependent on its volumetric concentration and slurry viscosity due to retardation and settling effects. As the location and the concentration of the proppants determine the final fracture permeability, the additional feature is expected to correctly identify the stimulated region. In this paper, the theory and the model formulation are presented along with a few key examples. The simulation can be used to design and optimize the amount of proppant and additives, injection timing, pressure, and well parameters required for successful hydraulic fracturing.

Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1652
Dong-Sin Shih ◽  
Gour-Tsyh Yeh

One-dimensional (1D) Saint-Venant equations, which originated from the Navier–Stokes equations, are usually applied to express the transient stream flow. The governing equation is based on the mass continuity and momentum equivalence. Its momentum equation, partially comprising the inertia, pressure, gravity, and friction-induced momentum loss terms, can be expressed as kinematic wave (KIW), diffusion wave (DIW), and fully dynamic wave (DYW) flow. In this study, the method of characteristics (MOCs) is used for solving the diagonalized Saint-Venant equations. A computer model, CAMP1DF, including KIW, DIW, and DYW approximations, is developed. Benchmark problems from MacDonald et al. (1997) are examined to study the accuracy of the CAMP1DF model. The simulations revealed that CAMP1DF can simulate almost identical results that are valid for various fluvial conditions. The proposed scheme that not only allows a large time step size but also solves half of the simultaneous algebraic equations. Simulations of accuracy and efficiency are both improved. Based on the physical relevance, the simulations clearly showed that the DYW approximation has the best performance, whereas the KIW approximation results in the largest errors. Moreover, the field non-prismatic case of the Zhuoshui River in central Taiwan is studied. The simulations indicate that the DYW approach does not ensure achievement of a better simulation result than the other two approximations. The investigated cross-sectional geometries play an important role in stream routing. Because of the consideration of the acceleration terms, the simulated hydrograph of a DYW reveals more physical characteristics, particularly regarding the raising and recession of limbs. Note that the KIW does not require assignment of a downstream boundary condition, making it more convenient for field application.

2015 ◽  
Vol 5 (6) ◽  
pp. 1-12 ◽  
Aiman Albatayneh ◽  
Dariusz Alterman ◽  
Adrian Page ◽  
Behdad Moghtaderi

Sign in / Sign up

Export Citation Format

Share Document