scholarly journals Wood Ash Based Treatment of Anaerobic Digestate: State-of-the-Art and Possibilities

Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 147
Author(s):  
Alejandro Moure Abelenda ◽  
Farid Aiouache

The problem of current agricultural practices is not limited to land management but also to the unsustainable consumption of essential nutrients for plants, such as phosphorus. This article focuses on the valorization of wood ash and anaerobic digestate for the preparation of a slow-release fertilizer. The underlying chemistry of the blend of these two materials is elucidated by analyzing the applications of the mixture. First, the feasibility of employing low doses (≤1 g total solids (TS) ash/g TS digestate) of wood ash is explained as a way to improve the composition of the feedstock of anaerobic digestion and enhance biogas production. Secondly, a detailed description concerning high doses of wood ash and their uses in the downstream processing of the anaerobic digestate to further enhance its stability is offered. Among all the physico-chemical phenomena involved, sorption processes are meticulously depicted, since they are responsible for nutrient recovery, dewatering, and self-hardening in preparing a granular fertilizer. Simple activation procedures (e.g., carbonization, carbonation, calcination, acidification, wash, milling, and sieving) are proposed to promote immobilization of the nutrients. Due to the limited information on the combined processing of wood ash and the anaerobic digestate, transformations of similar residues are additionally considered. Considering all the possible synergies in the anaerobic digestion and the downstream stages, a dose of ash of 5 g TS ash/g TS digestate is proposed for future experiments.

2005 ◽  
Vol 40 (4) ◽  
pp. 491-499 ◽  
Author(s):  
Jeremy T. Kraemer ◽  
David M. Bagley

Abstract Upgrading conventional single-stage mesophilic anaerobic digestion to an advanced digestion technology can increase sludge stability, reduce pathogen content, increase biogas production, and also increase ammonia concentrations recycled back to the liquid treatment train. Limited information is available to assess whether the higher ammonia recycle loads from an anaerobic sludge digestion upgrade would lead to higher discharge effluent ammonia concentrations. Biowin, a commercially available wastewater treatment plant simulation package, was used to predict the effects of anaerobic digestion upgrades on the liquid train performance, especially effluent ammonia concentrations. A factorial analysis indicated that the influent total Kjeldahl nitrogen (TKN) and influent alkalinity each had a 50-fold larger influence on the effluent NH3 concentration than either the ambient temperature, liquid train SRT or anaerobic digestion efficiency. Dynamic simulations indicated that the diurnal variation in effluent NH3 concentration was 9 times higher than the increase due to higher digester VSR. Higher recycle NH3 loads caused by upgrades to advanced digestion techniques can likely be adequately managed by scheduling dewatering to coincide with periods of low influent TKN load and ensuring sufficient alkalinity for nitrification.


2004 ◽  
Vol 50 (9) ◽  
pp. 25-32 ◽  
Author(s):  
F. Hogan ◽  
S. Mormede ◽  
P. Clark ◽  
M. Crane

Ultrasound is the term used to describe sound energy at frequencies above 20 kHz. Highpowered ultrasound can be applied to a waste stream via purpose-designed tools in order to induce cavitation. This effect results in the rupture of cellular material and reduction of particle size in the waste stream, making the cells more amenable to downstream processing. sonixTM is a new technology utilising high-powered, concentrated ultrasound for conditioning sludges prior to further treatment. This paper presents recent results from a number of demonstration and full-scale plants treating thickened waste activated sludge (TWAS) prior to anaerobic digestion, therefore enhancing the process. The present studies have proved that the use of ultrasound to enhance anaerobic digestion can be achieved at full scale and effectively result in the TWAS (typically difficult to digest) behaving, after sonication, as if it were a “primary” sludge. The technology presents benefits in terms of increased biogas production, better solids reduction, improved dewatering characteristics of the digested sludge mixture and relatively short payback periods of two years or less subject to the site conditions and practices applicable at that time.


2018 ◽  
Vol 37 (1) ◽  
pp. 33-46
Author(s):  
Edwir N. Richard Aloyce ◽  
Aloyce W. Mayo ◽  
Richard J. Kimwaga

Fruits are susceptible to mechanical damages during their transfer to the markets if they are not packed well in containers. Hence fruits wastes are generated in large quantities and because of their organic nature they decompose, which leads to environmental problems. The objective of this research was to quantify and characterize the fruits wastes generated from the Ubungo Urafiki Market in Ubungo Municipality and to establish the potential treatment of these wastes by anaerobic digestion. The data were collected in the field to establish the characteristics quantity of wastes generated in order to determine the potential degradation of fruit wastes using anaerobic digestion process. The market receives seven main kinds of fruits including pineapples, mangoes, water melons, avocados, oranges; paw paws and ripe bananas, which generate about 4.85 tons of fruit wastes per day. The leading fruits with higher percentage of wastes were water melons and oranges, which generated about 800 kg/day and 797 kg/day, respectively. The results of batch plants experiments showed that the reactor with fruit waste-cattle manure-wood ash mixtures had a maximum biogas yield of 34.2 liters while the reactor with fruit wastes-mixtures had lowest biogas yields of 0.1 liters. The reactor with fruit waste- wood ash mixtures had high volatile solid and total solid removal efficiencies of 8.0% and 14.3%, respectively. For the maximization of biogas production wood ash was recommended in order to raise the pH value of the fruit wastes. The batch reactor used in this study was limiting pH control and therefore activities of methanogenic bacteria. It is recommended to adopt a semi continuous or continuous reactor in order to limit excessive production of organic acids, which are responsible for inhibition of biogas production.


2019 ◽  
pp. 54-61 ◽  
Author(s):  
Younoussa Moussa Baldé ◽  
Cellou Kanté ◽  
Sette Diop ◽  
Sihem Tebbani

The present work is an account of an ongoing work on biogas production from animal wastes at LEREA (Laboratoire d’enseignement et de recherche en énergétique appliquée) in Mamou, Guinea. The work consists of biogas production from anaerobic digestion and co-digestion of cow dung and droppings. We focus in this report on the determination of the physico-chemical characteristics of the experimental setup. We have carried out three experiments of anaerobic digestion each one lasting 45 days at mesophilic temperature (temperature was maintained in the range 27°C - 28°C). Biogas - 28.4 liters have been obtained from droppings, 22.6 liters from cow dung and 38.7 liters from co-digestion of the previous two wastes. The following physico-chemical characteristcs were observed for cow dung: humidity 43%, dry matter 20.83%, organic matter 57%, density 625kg/m3, carbon content 31%, nitrogen content 1.46%, nitrogen-carbon ratio 21/30. For droppings we measured: humidity 35%, dry matter 65%, organic matter 62%, density 250 kg/m3, carbon content 36%, nitrogen level 1.83%. This characterization was carried out on a sample of 3 g of each type of substrate. These results agree with those of the literature that we were able to compare with. Keywords: anaerobic digestion; anaerobic co-digestion; physico-chimical characterization; cow dung weste; droppings weste; methanation; animal waste


2018 ◽  
Vol 12 (7) ◽  
pp. 580
Author(s):  
Antony P. Pallan ◽  
S. Antony Raja ◽  
C. G. Varma ◽  
Deepak Mathew D.K. ◽  
Anil K. S. ◽  
...  

2020 ◽  
Vol 10 (3) ◽  
Author(s):  
Damaris Kerubo Oyaro ◽  
Zablon Isaboke Oonge ◽  
Patts Meshack Odira

2016 ◽  
Vol 832 ◽  
pp. 55-62
Author(s):  
Ján Gaduš ◽  
Tomáš Giertl ◽  
Viera Kažimírová

In the paper experiments and theory of biogas production using industrial waste from paper production as a co-substrate are described. The main aim of the experiments was to evaluate the sensitivity and applicability of the biochemical conversion using the anaerobic digestion of the mixed biomass in the pilot fermentor (5 m3), where the mesophillic temperature was maintained. It was in parallel operation with a large scale fermentor (100 m3). The research was carried out at the biogas plant in Kolíňany, which is a demonstration facility of the Slovak University of Agriculture in Nitra. The experiments proved that the waste arising from the paper production can be used in case of its appropriate dosing as an input substrate for biogas production, and thus it can improve the economic balance of the biogas plant.


2021 ◽  
pp. 108084
Author(s):  
Marisa Raketh ◽  
Rattana Jariyaboon ◽  
Prawit Kongjan ◽  
Eric Trably ◽  
Alissara Reungsang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document