scholarly journals Effects of Different Diesel-Ethanol Dual Fuel Ratio on Performance and Emission Characteristics of Diesel Engine

Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1135
Author(s):  
Zhiqing Zhang ◽  
Jiangtao Li ◽  
Jie Tian ◽  
Guangling Xie ◽  
Dongli Tan ◽  
...  

In this paper, a four-stroke engine diesel was employed to investigate the effects of different fuel mixture ratios of diesel and ethanol on engine performance and emission characteristics in terms of cylinder temperature, heat release rate, brake power, brake thermal efficiency, brake specific fuel consumption, and cylinder pressure. The corresponding simulation model of diesel engine was developed by AVL-Fire coupled CHEMKIN code, and an improved chemical kinetics mechanism containing 34 reactions and 19 species was employed to simulate the fuel spray process and combustion process. The simulation model was validated by experimental results under 100% and 50% load conditions and used to simulate the combustion process of diesel engine fueled with pure diesel and diesel–ethanol blends with 10%, 20%, and 30% ethanol by volume, respectively. The results showed that the increase of ethanol content in the blended fuel had a certain negative impact on the performance characteristic of diesel engine and significantly improved the emission characteristic of the engine. With the ethanol proportion in the blended fuel increased to 10%, 20%, and 30%, the brake thermal efficiency of the engine increased by 2.24%, 4.33%, and 6.37% respectively. However, the brake-specific fuel consumption increased by 1.56%, 3.49%, and 5.74% and the power decreased by 1.58%, 3.46%, and 5.54% respectively. In addition, with the ethanol proportion in the blended fuel increased to 10%, 20%, and 30%, the carbon monoxide emission decreased by 34.69%, 47.60%, and 56.58%, and the soot emission decreased by 7.83%, 15.24%, and 22.52% respectively. Finally, based on the combining fuzzy and grey correlation theory, nitrogen oxide emission has the highest correlation with engine power and brake-specific fuel consumption. The values reach 0.9103 and 0.8945 respectively. It shows that nitrogen oxide emission and cylinder pressure have a significant relationship on engine power and brake-specific fuel consumption.

2011 ◽  
Vol 142 ◽  
pp. 103-106
Author(s):  
Wen Ming Cheng ◽  
Hui Xie ◽  
Gang Li

This paper discusses the brake specific fuel consumption and brake thermal efficiency of a diesel engine using cottonseed biodiesel blended with diesel fuel. A series of experiments were conducted for the various blends under varying load conditions at a speed of 1500 rpm and 2500 rpm and the results were compared with the neat diesel. From the results, it is found that the brake specific fuel consumption of cottonseed biodiesel is slightly higher than that of diesel fuel at different engine loads and speeds, with this increase being higher the higher the percentage of the biodiesel in the blend. And the brake thermal efficiency of cottonseed biodiesel is nearly similar to that of diesel fuel at different engine loads and speeds. From the investigation, it is concluded that cottonseed biodiesl can be directly used in diesel engines without any modifications, at least in small blending ratios.


2021 ◽  
Author(s):  
Naveen Rana ◽  
Harikrishna Nagwan ◽  
Kannan Manickam

Abstract Indeed, the development of alternative fuels for use in internal combustion engines has become an essential requirement to meet the energy demand and to deal with the different problems related to fuel. The research in this domain leads to the identification of adverse fuel properties and for their solution standard limits are being defined. This paper outlines an investigation of performance and combustion characteristics of a 4-stroke diesel engine using different cymbopogon (lemongrass) - diesel fuel blends. 10% to 40% cymbopogon is mixed with diesel fuel and tested for performance characteristics like brake specific fuel consumption and brake thermal efficiency. To obtain emission characteristics smoke density in the terms of HSU has been measured. In result, it has observed that there is an increase of 5% in brake thermal efficiency and 16.33% decrease in brake specific fuel consumption. Regarding emission characteristics, a 12.9% decrease in smoke emission has been found.


Author(s):  
Gvidonas LABECKAS ◽  
Stasys SLAVINSKAS ◽  
Tomas MACKEVIČIUS

This paper presents a comparative analysis of the diesel engine performance and emission characteristics, when operating on rapeseed methyl ester (B) and rapeseed methyl ester -butanol (Bu5, Bu10, Bu15) blends, at various loads and 2000 rpm engine speeds. The experimental tests were performed on a four-stroke, single-cylinder, air-cooled diesel engine FL511. The bench test results showed that the brake specific fuel consumption increased, when operating on biodiesel-butanol fuel blends compared to neat biodiesel. The maximum brake thermal efficiency sustained at the levels from 7.3% to 12.9% lower in comparison with neat biodiesel operating at low engine load. When the engine was running at maximum torque mode using biodiesel-butanol fuel blend Bu15 the total emissions of nitrogen oxides decreased. Thus, the greatest fossil fuel challenge related with the simultaneous reduction of both the NOx emissions and the smoke opacity (PM) could be reasonably solved by switching a diesel engine on totally renewable biodiesel-n-butanol biofuel blends.Keywords: diesel engine, rapeseed oil derived biodiesel, n-butanol, engine efficiency, brake specific fuel consumption, emissions, smoke opacity.


2015 ◽  
Vol 76 (5) ◽  
Author(s):  
N. R. Abdullah ◽  
Z. Michael ◽  
A. R. Asiah ◽  
A. J. Helmisyah ◽  
S. Buang

Biodiesel is used widely as an alternative fuel for diesel engine due to biodegradable, oxygenated, renewable and compatible with diesel engines . In fact, biodiesel emission has decreased the levels of potentially carcinogenic compounds. However, a certain biodiesel such as Jatropha Oil Methyl Ester (JOME) has resulted in the increase of specific fuel consumption and higher NOx emissions. Therefore, the objective of this study is to investigate the effects of Palm Oil Methyl Ester (POME) in the blended fuel (Fossil fuel + JOME) on the fuel consumption and exhaust emission. Experiments were carried out at a constant engine speed (2000 rpm) with variable of engine loads. Results show that the addition of POME leads to the significant reduction in brake specific fuel consumption (BSFC), Total hydrocarbons (THCs),  carbon monoxide (CO) and nitrogen dioxide (NOx) emissions. This study shows a huge difference for Total hydrocarbons emission of blends with 5% POME compared to blends with 10% and 15% of POME. Carbon monoxide emission for blends with 15% POME is the lowest at constant engine speed with various engine loads which in average is 53% lower than blends of 5% POME. This is because blends with higher percentage of POME has higher cetane number hence shortened the ignition delay resulted  in the lower possibility of formation of rich fuel zone and thus reduces CO emissions.  Moreover, the higher percentage of POME also resulted in lower NOx emission regardless of engine loads. The blends with 15% POME had the lowest NOx emission which is 25% less compared with the blends of 5% POME.  The study recommended that, additional POME to the blended fuel can be considered as a good initiative to improve blended fuel property for diesel engine due to its potential to improve engine emissions and reduce brake specific fuel consumption. In conclusion, the blends of POME into (Fossil fuel + JOME) improves engine emission without significantly increasing fuel consumption.


In this present work, experiments were conducted on a VCR Diesel engine with diesel, Neem oil biodiesel and Di-ethyl ether mixed with neem oil biodiesel. The performance and emission characteristics were evaluated and compared. The study shown that the Brake thermal efficiency increased and the brake specific fuel consumption reduced with B10 blend of neem oil biodiesel compared to diesel. The emissions of CO, CO2 were reduced but HC and smoke were increased with the use of biodiesel than diesel. The addition of Diethyl Ether (DEE) further improved the performance and decreased the emissions of CO and CO2 of the engine at B20DEE20 blend compared to other blends of biodiesel and diesel.


Author(s):  
Waleed A. Abdelghaffar ◽  
Mohsen M. Osman ◽  
Mohamed N. Saeed ◽  
Abdelfattah I. Abdelfatteh

Experiments were conducted on a four-cylinder, four-stroke, direct-injected diesel engine to study the effects of engine coolant temperature on both performance parameters and exhaust emissions. The energy balance is discussed on the bases of first-law analysis and second-law analysis. The range of speed investigated was 1000–2000 RPM for the torque range of 25–152 N.m. The coolant temperature was varied from 50 to 95 °C. The present study shows that the coolant temperature has a significant effect on the volumetric efficiency. It also shows that increasing coolant temperature decreases the mass flow rate of fuel consumption and the cooling losses. As a result, the brake specific fuel consumption decreases and the brake thermal efficiency increases. A chart was developed for showing the relationship between the coolant temperature, equivalence ratio, brake torque, and brake specific fuel consumption. The study shows that the coolant temperature has a significant effect on NOx emissions and minor effects on the volumetric percentages of oxygen, carbon dioxide, and carbon monoxide. The unburned hydrocarbons show insignificant variation. This work also shows that increasing coolant temperature slightly increases the availability of the coolant and decreases the total availability losses.


2015 ◽  
Vol 766-767 ◽  
pp. 557-561
Author(s):  
S. Arunprasad ◽  
Thangavel Balusamy ◽  
S. Sivalakshmi

In this present paper, an attempt has been made to examine the performance and emission characteristics of a single cylinder diesel engine fueled with blends of mixed biodiesel (Thevetia peruviana, Neem, Jatropha, Pongamia). Experiments were conducted with various blends of mixed biodiesel in CI engine for different loads. The results show that lower brake thermal efficiency and higher brake specific fuel consumption were obtained with mixed biodiesel blends when compared with diesel. Lower the value of CO and HC and higher the value of CO2 emissions were determined for mixed biodiesel blends compared to that of diesel. Also, higher in NOx and lower smoke opacity were found compared to diesel.


Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1984
Author(s):  
Yanhui Zhang ◽  
Yunhao Zhong ◽  
Jie Wang ◽  
Dongli Tan ◽  
Zhiqing Zhang ◽  
...  

In this paper, biodiesel was used as an alternative fuel to investigate the combustion and emission characteristics of a four-stroke diesel engine, in terms of cylinder pressure, heat release rate, cylinder temperature, brake thermal efficiency, brake specific fuel consumption, nitrogen oxide, soot, carbon monoxide, and hydrocarbon. Firstly, a diesel engine cylinder model was developed by AVL-Fire software coupled with CHEMKIN code to simulate the injection and combustion of biodiesel with a kinetic mechanism with 106 species and 263 reactions. Then, the simulation model was validated by experimental results under 100% and 50% load conditions and used to simulate the combustion process of a diesel engine fueled with pure diesel, biodiesel, and biodiesel–diesel blends with 10%, 20%, 30% biodiesel by volume, respectively. The results showed that the brake specific fuel consumption increased with the increase of mixed biodiesel ratio. The brake specific fuel consumptions of B10, B20 and B30 increased by 1.1%, 2.3% and 3.3%, respectively, compared with that of D100. The combustion and emission characteristics of the diesel engine are improved. Therefore, biodiesel can be used as an alternative fuel for the diesel engine. The diesel–biodiesel fuel can improve the combustion and emission characteristics of the diesel engine.


2013 ◽  
Vol 860-863 ◽  
pp. 1685-1689
Author(s):  
Ze Fei Tan ◽  
Li Zhong Shen ◽  
De Cai Jin ◽  
Yang Wen Bin Ou

To study the effect of the biodiesel on the performance of the high pressure common rail diesel engine performance, a experiment is conducted about the high pressure common rail diesel engine uses diesel fuel and different blending ratio of biodiesels. The results show that with the rising of the altitude, the engine power and the brake specific fuel consumption reduce, exhaust gas temperature increases; At the same altitude, the engine fueled with different blending ratio of bio-diesel has higher brake specific fuel consumption in comparison with fueled engine, but it has lower power, with the increase in bio-diesel blending ratio, engine power, fuel consumption increase.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1366
Author(s):  
Zhiqing Zhang ◽  
Jie Tian ◽  
Jiangtao Li ◽  
Hongchen Ji ◽  
Dongli Tan ◽  
...  

To improve the combustion and emission characteristics of diesel engines, methanol-diesel fuels with different mixing ratios (DM0, DM10, DM20, DM30, and DM40) were used to investigate the effects of methanol addition on the combustion and emission of a four-stroke diesel engine in terms of cylinder pressure, brake power, brake-specific fuel consumption, and nitrogen oxides, soot, and carbon monoxide emissions. Firstly, an improved entire diesel engine model was developed using AVL-BOOST software and validated by the experimental results. The results showed that the increase of methanol content in the fuel mixture had a negative impact on the performance characteristic of the diesel engine, but significantly improved the emission characteristic of the diesel engine. With the methanol ratio in the mixed fuel increased to 10%, 20%, 30%, and 40%, the cylinder pressure of the engine increased by 0.89%, 1.48%, 2.29%, and 3.17%, respectively. However, the power decreased by 3.76%, 6.74%, 11.35%, and 15.45%, the torque decreased by 3.76%, 6.74%, 11.35%, and 15.45%, respectively, and the brake specific fuel consumption increased by 3.77%, 6.92%, 12.33%, and 17.61%, respectively. In addition, with the methanol ratio in the mixed fuel increased to 10%, 20%, 30%, and 40%, the carbon monoxide emission decreased by 21.32%, 39.04%, 49.81%, and 56.59% and the soot emission decreased by 0.25%, 8.69%, 16.81%, and 25.28%, respectively. Therefore, the addition of methanol to the fuel can improve the combustion and emission characteristics of the engine.


Sign in / Sign up

Export Citation Format

Share Document