scholarly journals A Preliminary Life Cycle Analysis of Bioethanol Production Using Seawater in a Coastal Biorefinery Setting

Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1399
Author(s):  
Abdelrahman S. Zaky ◽  
Claudia E. Carter ◽  
Fanran Meng ◽  
Christopher E. French

Bioethanol has many environmental and practical benefits as a transportation fuel. It is one of the best alternatives to replace fossil fuels due to its liquid nature, which is similar to the gasoline and diesel fuels traditionally used in transportation. In addition, bioethanol production technology has the capacity for negative carbon emissions, which is vital for solving the current global warming dilemma. However, conventional bioethanol production takes place based on an inland site and relies on freshwater and edible crops (or land suitable for edible crop production) for production, which has led to the food vs. fuel debate. Establishing a coastal marine biorefinery (CMB) system for bioethanol production that is based on coastal sites and relies on marine resources (seawater, marine biomass and marine yeast) could be the ultimate solution. In this paper, we aim to evaluate the environmental impact of using seawater for bioethanol production at coastal locations as a step toward the evaluation of a CMB system. Hence, a life cycle assessment for bioethanol production was conducted using the proposed scenario, named Coastal Seawater, and compared to the conventional scenario, named Inland Freshwater (IF). The impact of each scenario in relation to climate change, water depletion, land use and fossil depletion was studied for comparison. The Coastal Seawater scenario demonstrated an improvement upon the conventional scenario in all the selected impact categories. In particular, the use of seawater in the process had a significant effect on water depletion, showing an impact reduction of 31.2%. Furthermore, reductions were demonstrated in natural land transformation, climate change and fossil depletion of 5.5%, 3.5% and 4.2%, respectively. This indicates the positive impact of using seawater and coastal locations for bioethanol production and encourages research to investigate the CMB system.

Author(s):  
Abdelrahman S. Zaky ◽  
Claudia E. Carter ◽  
Fanran Meng ◽  
Christopher E. French

Bioethanol has many environmental and practical benefits as a transportation fuel. It is one of the best alternatives to replace fossil fuels due to its liquid nature which is similar to petrol and diesel fuels traditionally used in transportation. In addition, bioethanol production technology has the capacity for negative carbon emissions which is vital for solving the current global warming dilemma. However, conventional bioethanol production takes place based on an inland site and relies on freshwater and edible crops (or land suitable for edible crop production) for production, which has led to the food vs fuel debate. Establishing a coastal marine biorefinery (CMB) system for bioethanol production that is based on coastal sites and relies on marine resources (seawater, marine biomass and marine yeast) could be the ultimate solution. In this paper, we aim to evaluate the environmental impact of using seawater for bioethanol production at coastal locations as a step towards the evaluation of a CMB system. Hence, a life cycle assessment for bioethanol production was conducted using the proposed scenario named Coastal-Seawater and compared to the conventional scenario, named Inland-Freshwater (IF). The impact of each scenario in relation to climate change, water depletion, land use and fossil depletion was studied for comparison. The coastal-seawater scenario demonstrated an improvement upon the conventional scenario in all the selected impact categories. In particular, the use of seawater in the process had a significant effect on water depletion showing an impact reduction of 31.2%. Furthermore, reductions are demonstrated in natural land transformation, climate change and fossil depletion of 5.5%, 3.5% and 4.2% respectively. This indicates the positive impact of using seawater and coastal locations for bioethanol production and encourages research to investigate the CMB system.


Author(s):  
Abdelrahman S. Zaky ◽  
Claudia E. Carter ◽  
Fanran Meng ◽  
Christopher E. French

Bioethanol has many environmental and practical benefits as a transportation fuel. It is one of the best alternatives to replace fossil fuels due to its liquid nature which is similar to petrol and diesel fuels traditionally used in transportation. In addition, bioethanol production technology has the capacity for negative carbon emissions which is vital for solving the current global warming dilemma. However, conventional bioethanol production takes place based on an inland site and relies on freshwater and edible crops (or land suitable for edible crop production) for production, which has led to the food vs fuel debate. Establishing a coastal marine biorefinery (CMB) system for bioethanol production that is based on coastal sites and relies on marine resources (seawater, marine biomass and marine yeast) could be the ultimate solution. In this paper, we aim to evaluate the environmental impact of using seawater for bioethanol production at coastal locations as a step towards the evaluation of a CMB system. Hence, a life cycle assessment for bioethanol production was conducted using the proposed scenario named Coastal-Seawater and compared to the conventional scenario, named Inland-Freshwater (IF). The impact of each scenario in relation to climate change, water depletion, land use and fossil depletion was studied for comparison. The coastal-seawater scenario demonstrated an improvement upon the conventional scenario in all the selected impact categories. In particular, the use of seawater in the process had a significant effect on water depletion showing an impact reduction of 31.2%. Furthermore, reductions are demonstrated in natural land transformation, climate change and fossil depletion of 5.5%, 3.5% and 4.2% respectively. This indicates the positive impact of using seawater and coastal locations for bioethanol production and encourages research to investigate the CMB system.


2021 ◽  
Vol 5 ◽  
Author(s):  
Julien Morel ◽  
Uttam Kumar ◽  
Mukhtar Ahmed ◽  
Göran Bergkvist ◽  
Marcos Lana ◽  
...  

Ongoing climate change is already affecting crop production patterns worldwide. Our aim was to investigate how increasing temperature and CO2 as well as changes in precipitation could affect potential yields for different historical pedoclimatic conditions at high latitudes (i.e., >55°). The APSIM crop model was used to simulate the productivity of four annual crops (barley, forage maize, oats, and spring wheat) over five sites in Sweden ranging between 55 and 64°N. A first set of simulations was run using site-specific daily weather data acquired between 1980 and 2005. A second set of simulations was then run using incremental changes in precipitation, temperature and CO2 levels, corresponding to a range of potential future climate scenarios. All simulation sets were compared in terms of production and risk of failure. Projected future trends showed that barley and oats will reach a maximum increase in yield with a 1°C increase in temperature compared to the 1980–2005 baseline. The optimum temperature for spring wheat was similar, except at the northernmost site (63.8°N), where the highest yield was obtained with a 4°C increase in temperature. Forage maize showed best performances for temperature increases of 2–3°C in all locations, except for the northernmost site, where the highest simulated yield was reached with a 5°C increase. Changes in temperatures and CO2 were the main factors explaining the changes in productivity, with ~89% of variance explained, whereas changes in precipitation explained ~11%. At the northernmost site, forage maize, oats and spring wheat showed decreasing risk of crop failure with increasing temperatures. The results of this modeling exercise suggest that the cultivation of annual crops in Sweden should, to some degree, benefit from the expected increase of temperature in the coming decades, provided that little to no water stress affects their growth and development. These results might be relevant to agriculture studies in regions of similar latitudes, especially the Nordic countries, and support the general assumption that climate change should have a positive impact on crop production at high latitudes.


Author(s):  
J. Macholdt ◽  
J. Glerup Gyldengren ◽  
E. Diamantopoulos ◽  
M. E. Styczen

Abstract One of the major challenges in agriculture is how climate change influences crop production, for different environmental (soil type, topography, groundwater depth, etc.) and agronomic management conditions. Through systems modelling, this study aims to quantify the impact of future climate on yield risk of winter wheat for two common soil types of Eastern Denmark. The agro-ecosystem model DAISY was used to simulate arable, conventional cropping systems (CSs) and the study focused on the three main management factors: cropping sequence, usage of catch crops and cereal straw management. For the case region of Eastern Denmark, the future yield risk of wheat does not necessarily increase under climate change mainly due to lower water stress in the projections; rather, it depends on appropriate management and each CS design. Major management factors affecting the yield risk of wheat were N supply and the amount of organic material added during rotations. If a CS is characterized by straw removal and no catch crop within the rotation, an increased wheat yield risk must be expected in the future. In contrast, more favourable CSs, including catch crops and straw incorporation, maintain their capacity and result in a decreasing yield risk over time. Higher soil organic matter content, higher net nitrogen mineralization rate and higher soil organic nitrogen content were the main underlying causes for these positive effects. Furthermore, the simulation results showed better N recycling and reduced nitrate leaching for the more favourable CSs, which provide benefits for environment-friendly and sustainable crop production.


2021 ◽  
Vol 13 (12) ◽  
pp. 2249
Author(s):  
Sadia Alam Shammi ◽  
Qingmin Meng

Climate change and its impact on agriculture are challenging issues regarding food production and food security. Many researchers have been trying to show the direct and indirect impacts of climate change on agriculture using different methods. In this study, we used linear regression models to assess the impact of climate on crop yield spatially and temporally by managing irrigated and non-irrigated crop fields. The climate data used in this study are Tmax (maximum temperature), Tmean (mean temperature), Tmin (minimum temperature), precipitation, and soybean annual yields, at county scale for Mississippi, USA, from 1980 to 2019. We fit a series of linear models that were evaluated based on statistical measurements of adjusted R-square, Akaike Information Criterion (AIC), and Bayesian Information Criterion (BIC). According to the statistical model evaluation, the 1980–1992 model Y[Tmax,Tmin,Precipitation]92i (BIC = 120.2) for irrigated zones and the 1993–2002 model Y[Tmax,Tmean,Precipitation]02ni (BIC = 1128.9) for non-irrigated zones showed the best fit for the 10-year period of climatic impacts on crop yields. These models showed about 2 to 7% significant negative impact of Tmax increase on the crop yield for irrigated and non-irrigated regions. Besides, the models for different agricultural districts also explained the changes of Tmax, Tmean, Tmin, and precipitation in the irrigated (adjusted R-square: 13–28%) and non-irrigated zones (adjusted R-square: 8–73%). About 2–10% negative impact of Tmax was estimated across different agricultural districts, whereas about −2 to +17% impacts of precipitation were observed for different districts. The modeling of 40-year periods of the whole state of Mississippi estimated a negative impact of Tmax (about 2.7 to 8.34%) but a positive impact of Tmean (+8.9%) on crop yield during the crop growing season, for both irrigated and non-irrigated regions. Overall, we assessed that crop yields were negatively affected (about 2–8%) by the increase of Tmax during the growing season, for both irrigated and non-irrigated zones. Both positive and negative impacts on crop yields were observed for the increases of Tmean, Tmin, and precipitation, respectively, for irrigated and non-irrigated zones. This study showed the pattern and extent of Tmax, Tmean, Tmin, and precipitation and their impacts on soybean yield at local and regional scales. The methods and the models proposed in this study could be helpful to quantify the climate change impacts on crop yields by considering irrigation conditions for different regions and periods.


2019 ◽  
Vol 15 (2) ◽  
pp. 55-68
Author(s):  
András Polgár ◽  
Zoltán Kovács ◽  
Veronika Elekné Fodor ◽  
András Bidló

Abstract Environmental life cycle assessment (LCA) was developed as a tool for sustainable, decision-supporting environmental management. Applying agricultural sector-LCA in order to achieve both internal (comparative) and external (efficiency enhancing) benefits is a priority. Since the life-cycle assessment of products and processes attracts great interest, applying the method in agriculture is relevant. Our study undertakes a comparative environmental life-cycle assessment (LCA) of local arable crop production technologies used for the main cultivated plants: maize, sunflower, lucerne, cereals, and canola (environmental data in the territorial approach calculated on a 1 ha unit and in the quantitative approach calculated on 1 t of produce). We prepared an environmental inventory of the arable crop production technologies, constructed the life-cycle models, and executed the impact assessment. We also compiled an environmental ranking of technologies. In the impact interpretation, we compared the results with the values of short rotation energy plantations in each impact category. We analysed carbon footprints closely. The obtained results help better assess environmental impacts, climate risks, and climate change as they pertain to arable crop production technologies, which advances the selection of appropriate technologies adjusted to environmental sensitivities.


2021 ◽  
Author(s):  
Tasneem Chowdhury Fahim ◽  
Bivuti Bhushan Sikder

Abstract Bangladesh is confronting terrible impacts of climate change on agriculture across the country, especially in the low-lying area like- Haor, coastal region, and islands. This behavioral study (N = 320) examines the perception and knowledge of farmers on climate-induced events and experiences, and explores the adaptation practices they adopt to protect crop production and livestock farming from the impact of climate change in the Northeastern Haor area of the country. Using triangulation method, it is detected that farmers of the study area have erroneous idea on climate change and the causes of frequent climate extremes. Study results show that respondents’ perception and experiences on climate-induced event are verified positively with the historical trend and time-series analysis of climate indicators as well as with the findings of researchers using PRA tools and techniques. This study explores the traditional and systematic adaptation approaches of farmers which are practiced in individual or community level. The rationale of each of the approach from respondents’ side is also analyzed in the study. It is statistically tested using chi-square that some of the scientific and systematic adaptation options for crop production is predominantly influenced by the educational qualifications of the respondents. The study reveals that lack of proper information prevents subsistence farmers to find the most effective adaptation pathways.


2015 ◽  
Vol 3 (7) ◽  
pp. 4353-4389
Author(s):  
S. Quiroga ◽  
C. Suárez

Abstract. This paper examines the effects of climate change and drought on agricultural outputs in Spanish rural areas. By now the effects of drought as a response to climate change or policy restrictions have been analyzed through response functions considering direct effects on crop productivity and incomes. These changes also affect incomes distribution in the region and therefore modify the social structure. Here we consider this complementary indirect effect on social distribution of incomes which is essential in the long term. We estimate crop production functions for a range of Mediterranean crops in Spain and we use a decomposition of inequalities measure to estimate the impact of climate change and drought on yield disparities. This social aspect is important for climate change policies since it can be determinant for the public acceptance of certain adaptation measures in a context of drought. We provide the empirical estimations for the marginal effects of the two considered impacts: farms' income average and social income distribution. In our estimates we consider crop productivity response to both bio-physical and socio-economic aspects to analyze long term implications on both competitiveness and social disparities. We find disparities in the adaptation priorities depending on the crop and the region analyzed.


2021 ◽  
Vol 4 (2) ◽  
pp. 159-169
Author(s):  
Eko Sumartono ◽  
Gita Mulyasari ◽  
Ketut Sukiyono

Bengkulu is said to be the center of the world's climate because of the influence of water conditions and the topography of the area where the rain cloud formation starts. The waters in Bengkulu Province become a meeting place for four ocean currents which eventually become an area where the evaporation process of forming rain clouds becomes the rainy or dry season and affects the world climate. Method to analyze descriptively, shows oldeman Classification and satellite rainfall estimation data is added. In relation to the Analysis of Potential Food Availability for the Coastal Areas of Bengkulu Province uses a quantifiable descriptive analysis method based. The results show that most are included in the Oldeman A1 climate zone, which means it is suitable for continuous rice but less production due to generally low radiation intensity throughout the year. In an effort to reduce or eliminate the impact of climate change on food crop production, it is necessary to suggest crop diversification, crop rotation, and the application of production enhancement technologies. Strategies in building food availability as a result of climate change are: First, develop food supplies originating from regional production and food reserves on a provincial scale. Second, Empowering small-scale food businesses which are the dominant characteristics of the agricultural economy, especially lowland rice and horticultural crops. Third, Increase technology dissemination and increase the capacity of farmers in adopting appropriate technology to increase crop productivity and business efficiency. Four, Promote the reduction of food loss through the use of food handling, processing and distribution technologies. 


Agronomy ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 145 ◽  
Author(s):  
Viola Devasirvatham ◽  
Daniel Tan

Global climate change has caused severe crop yield losses worldwide and is endangering food security in the future. The impact of climate change on food production is high in Australia and globally. Climate change is projected to have a negative impact on crop production. Chickpea is a cool season legume crop mostly grown on residual soil moisture. High temperature and terminal drought are common in different regions of chickpea production with varying intensities and frequencies. Therefore, stable chickpea production will depend on the release of new cultivars with improved adaptation to major events such as drought and high temperature. Recent progress in chickpea breeding has increased the efficiency of assessing genetic diversity in germplasm collections. This review provides an overview of the integration of new approaches and tools into breeding programs and their impact on the development of stress tolerance in chickpea.


Sign in / Sign up

Export Citation Format

Share Document