scholarly journals Solar Architecture Integrated Bi-Facial Photovoltaic System as a Shade

Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1625
Author(s):  
Seung-Ho Yoo ◽  
Hee-Jeong Choi

Solar architecture is defined as a kind of building integrated photovoltaic (BIPV) in which the PV modules are deployed to passive solar concepts, to minimize the heating and cooling load, to upgrade the indoor environment, and to be adjustable for regional weather and to continuously succeed architectural culture. Solar architecture needs to consider the architectural culture and climate of the region through an ecological convergence. The ecological criteria lead to optimizing solar architecture through an ecological convergence of a passive intelligence and renewable energy system. The optimal angle of the bi-facial PV module as a shade is 23.5° considering the physical interaction and the traditional architecture in Korea according to the ecological criteria. The shading concept of the PV module reduces 27.5~34% of the building cooling load. Effective solar irradiance (ESR) is very important not only for PV efficiency but also for the system usage rate. This ESR should be controlled depending on the climate condition to maximize the total energy elimination factor and total energy transmittance factor for a window. The MB-BIPVS play an excellent role to maximize the total energy elimination factor and total energy transmittance factor for a window.

Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2919
Author(s):  
Jin-Hee Kim ◽  
Ji-Suk Yu ◽  
Jun-Tae Kim

BIPV (Building Integrated Photovoltaic) system is a building envelope technology that generates energy by converting solar energy into electricity. However, after producing electrical energy, the remaining solar energy is transferred as heat, raising the temperature at the rear of the BIPV module, and reducing electrical efficiency. On the other hand, a PVT (Photovoltaic Thermal) collector is a device that generates electricity from a PV module and at the same time uses the heat transferred to the air layer inside the collector. In general, the performance of air-type PVT collectors is based on energy analysis using the first law of thermodynamics. Since this performance does not take into account the loss amount, it is not the actual amount of power generation and preheat of the collector that can be used. Therefore, an exergy analysis based on the second law of thermodynamics considering the amount of energy loss must be performed. In this paper, an air-type PVT collector to which perforated baffles were applied was tested through outdoor experiments based on ISO 9806 standard. The total energy (thermal and electrical characteristics) and exergy according to the flow rate (100, 150, and 200 m3/h), solar radiation, and rear temperature of the PV module of the air-type PVT collector were analyzed. As a result, the total exergy efficiency of the air-type PVT collector with perforated baffles was 24.8–30.5% when the total energy efficiency was 44.1–63.3%.


Author(s):  
Yasuhiro Matsumoto ◽  
Marco A. Ramos ◽  
Jose A. Urbano ◽  
Miguel A. Luna ◽  
Nun Pitalua-Diaz ◽  
...  

2018 ◽  
Vol 240 ◽  
pp. 04003 ◽  
Author(s):  
Marek Jaszczur ◽  
Qusay Hassan ◽  
Janusz Teneta

In this paper, an investigation of the electrical load temporal resolution on the PV/Grid energy system flows, and self-consumption is done in order to determine the optimum parameters for modelling and simulation. The analysed PV/Grid power systems include a photovoltaic system with the nominal power of Pmax@STC=1.5, 2.5, 3.5 kW without storage unit connected to the grid. The results show that the temporal load resolution may have a high impact on energy flows as well as can be a critical issue for the system analysis accuracy even for the single household. It has been found that the load temporal resolution for energy consumption of 1-min yields reliable results, while data resolutions of 5 and 15 min are still sufficient, however, in that case, the daily electrical energy flows and in consequence energy self-consumption estimation error for selected days may exceed 15%. Acquisition time step longer than 15-minutes may increase error above 20% and from the designer’s point of view should not be used. The high and low temporal resolution experimental data of the electricity consumption (load) for a household are available in digital form on the author’s website http://home.agh.edu.pl/jaszczur.


Author(s):  
VS Chandrika ◽  
M Mohamed Thalib ◽  
Alagar Karthick ◽  
Ravishankar Sathyamurthy ◽  
A Muthu Manokar ◽  
...  

Photovoltaic (PV) system efficiency depends on the geographical location and the orientation of the building. Until installing the building structures, the integration of the PV module must be evaluated with ventilation and without ventilation effects. This work optimises the performance of the 250 kWp grid-connected photovoltaic (GPV) for community buildings in the southern part of India. This simulation is carried out to evaluate the system efficiency of the GPV system under various ventilation conditions, such as free-standing PV (FSPV), building integrated photovoltaic ventilated (BIPV_V) and Building Integrated Photovoltaic without ventilation (BIPV). The PVsyst simulation tool is used to simulate and optimise the performance of the system with FSPV, BIPV and BIPV_V for the region of Chennai (13.2789° N, 80.2623° E), Tamilnadu, India. An annual system energy production is 446 MWh, 409 MWh and 428 MWh of FSPV, BIPV and BIPV_V system respectively. while electrical efficiency for the FSPV, BIPV_V, BIPV system is 15.45%. 15.25% and 14.75% respectively. Practical application: Integrating the grid connected photovoltaic system on the building reduces the energy consumption in the building. The integration of the PV on the roof or semi integrated on the roof is need to be investigated before installing on the buildings. The need for installation of the BIPV with ventilation is explored. This study will assist architects and wider community to design buildings roofs with GPV system which are more aesthetic and account for noise protection and thermal insulation in the region of equatorial climate zones.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 163
Author(s):  
Jong Rok Lim ◽  
Woo Gyun Shin ◽  
Chung Geun Lee ◽  
Yong Gyu Lee ◽  
Young Chul Ju ◽  
...  

In recent years, various types of installations such as floating photovoltaic (PV) and agri-voltaic systems, and BIPV (building integrated photovoltaic system) have been implemented in PV systems and, accordingly, there is a growing demand for new PV designs and materials. In particular, in order to install a PV module in a building, it is important to reduce the weight of the module. The PV module in which low-iron, tempered glass is applied to the front surface, which is generally used, has excellent electrical output and reliability characteristics; however, it is heavy. In order to reduce the weight of the PV module, it is necessary to use a film or plastic-based material, as opposed to low-iron, tempered glass, on the front surface. However, if a material other than glass is used on the front of the PV module, various problems such as reduced electrical output and reduced reliability may occur. Therefore, in this paper, a PV module using a film instead of glass as the front surface was fabricated, and a characteristic analysis and reliability test were conducted. First, the transmittance and UV characteristics of each material were tested, and one-cell and 24-cell PV modules were fabricated and tested for electrical output and reliability. From the results, it was found that the transmittance and UV characteristics of the front material were excellent. In addition, the electrical output and reliability test results confirmed that the front-surface film was appropriate for use in a PV module.


Author(s):  
Heangwoo Lee ◽  
Xiaolong Zhao ◽  
Janghoo Seo

Recent studies on light shelves found that building energy efficiency could be maximized by applying photovoltaic (PV) modules to light shelf reflectors. Although PV modules generate a substantial amount of heat and change the consumption of indoor heating and cooling energy, performance evaluations carried out thus far have not considered these factors. This study validated the effectiveness of PV module light shelves and determined optimal specifications while considering heating and cooling energy savings. A full-scale testbed was built to evaluate performance according to light shelf variables. The uniformity ratio was found to improve according to the light shelf angle value and decreased as the PV module installation area increased. It was determined that PV modules should be considered in the design of light shelves as their daylighting and concentration efficiency change according to their angles. PV modules installed on light shelves were also found to change the indoor cooling and heating environment; the degree of such change increased as the area of the PV module increased. Lastly, light shelf specifications for reducing building energy, including heating and cooling energy, were not found to apply to PV modules since PV modules on light shelf reflectors increase building energy consumption.


Sign in / Sign up

Export Citation Format

Share Document