scholarly journals N–Doped Porous Carbon Microspheres Derived from Yeast as Lithium Sulfide Hosts for Advanced Lithium-Ion Batteries

Processes ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1822
Author(s):  
Sheng Liang ◽  
Jie Chen ◽  
Xuehua He ◽  
Lingli Liu ◽  
Ningning Zhou ◽  
...  

Lithium sulfide (Li2S) is considered to be the best potential substitution for sulfur-based cathodes due to its high theoretical specific capacity (1166 mAh g−1) and good compatibility with lithium metal-free anodes. However, the electrical insulation nature of Li2S and severe shuttling of lithium polysulfides lead to poor rate capability and cycling stability. Confining Li2S into polar conductive porous carbon is regarded as a promising strategy to solve these problems. In this work, N-doped porous carbon microspheres (NPCMs) derived from yeasts are designed and synthesized as a host to confine Li2S. Nano Li2S is successfully entered into the NPCMs’ pores to form N-doped porous carbon microspheres–Li2S composite (NPCMs–Li2S) by a typical liquid infiltration–evaporation method. NPCMs–Li2S not only delivers a high initial discharge capacity of 1077 mAh g−1 at 0.2 A g−1, but also displays good rate capability of 198 mAh g−1 at 5.0 A g−1 and long-term lifespan over 500 cycles. The improved cycling and high-rate performance of NPCMs–Li2S can be attributed to the NPCMs’ host, realizing the strong fixation of LiPSs and enhancing the electron and charge conduction of Li2S in NPCMs–Li2S cathodes.

2020 ◽  
Vol 7 (9) ◽  
pp. 1900-1908 ◽  
Author(s):  
Xiaoxia Xu ◽  
Lingjie Li ◽  
Huiqing Chen ◽  
XiaoSong Guo ◽  
Zhonghua Zhang ◽  
...  

Heterostructured porous FeS2/CuS nanospheres exhibit enhanced reaction kinetics, excellent rate capability and desirable long-term cycling stability performance.


2018 ◽  
Vol 2018 ◽  
pp. 1-6
Author(s):  
Heming Deng ◽  
Wei Liang ◽  
Dexin Nie ◽  
Jian Wang ◽  
Xu Gao ◽  
...  

The spinel Li4Ti5O12 (LTO) has been doped by Ca2+ via a solid-state reaction route, generating highly crystalline Li3.9Ca0.1Ti5O12 powders in order to improve the electrochemical performance as an anode. The structure changes, morphologies, and electrochemical properties of the resultant powders have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and cyclic voltammetry (CV), respectively. Crystal structure and composition were analyzed, and results were obtained with various tests of LTO. Electrochemical measurements revealed that Li3.9Ca0.1Ti5O12 anodes exhibit better rate capability, better cycling stability, and a higher specific capacity than pure LTO anodes.


2016 ◽  
Vol 4 (24) ◽  
pp. 9593-9599 ◽  
Author(s):  
Gaihua Li ◽  
Hao Yang ◽  
Fengcai Li ◽  
Jia Du ◽  
Wei Shi ◽  
...  

Utilizing the adsorption properties of MOFs, a nanostructured NiP2@C was successfully synthesized, which exhibited enhanced capability for lithium storage in terms of both the reversible specific capacity and high-rate performance.


Nanoscale ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 5812-5816 ◽  
Author(s):  
Jinyun Liu ◽  
Xirong Lin ◽  
Tianli Han ◽  
Qianqian Lu ◽  
Jiawei Long ◽  
...  

Metallic germanium (Ge) as the anode can deliver a high specific capacity and high rate capability in lithium ion batteries.


2015 ◽  
Vol 3 (9) ◽  
pp. 5054-5059 ◽  
Author(s):  
Chang Yu ◽  
Meng Chen ◽  
Xiaoju Li ◽  
Changtai Zhao ◽  
Lianlong He ◽  
...  

Hierarchically porous carbon architectures composed of a micro-sized porous carbon sphere matrix embedded with hollow nanocapsules are configured, demonstrating a large capacity and an ultra-high rate capability in lithium ion batteries.


2016 ◽  
Vol 4 (35) ◽  
pp. 13646-13651 ◽  
Author(s):  
Cheng Zheng ◽  
Minying Liu ◽  
Wenqiang Chen ◽  
Lingxing Zeng ◽  
Mingdeng Wei

A Se/CMK-3 composite was in situ synthesized, exhibiting large capacity, high rate performance and excellent long-term cycling stability for Li-ion intercalation.


2015 ◽  
Vol 3 (5) ◽  
pp. 1879-1883 ◽  
Author(s):  
Y. L. Wang ◽  
X. Wang ◽  
L. Y. Tian ◽  
Y. Y. Sun ◽  
Shi-hai Ye

LiBr, as a representative of high soluble electrochemical active materials, is fixed in nanopores of conductive carbon black (CCB). The Li/LiBr–CCB battery presents excellent high-rate capability for avoiding the slow solid-phase diffusion of Li ions in traditional solid cathode materials.


2020 ◽  
Vol 20 (11) ◽  
pp. 7034-7038 ◽  
Author(s):  
Mookala Premasudha ◽  
Bhumi Reddy Srinivasulu Reddy ◽  
Ki-Won Kim ◽  
Nagireddy Gari Subba Reddy ◽  
Jou-Hyeon Ahn ◽  
...  

In this work, the hydrothermal method was employed to produce SnO2/rGO as anode material. Nanostructured SnO2 was prepared to enhance reversibility and to deal with the undesirable volume changes during cycling. The SnO2/rGO hybrid exhibits long cycle life in lithium-ion storage capacity and rate capability with an initial discharge capacity of 1327 mAh/g at 0.1 C rate. These results demonstrate that a fabricated SnO2/rGO matrix will be a possible way to obtain high rate performance.


Nanoscale ◽  
2016 ◽  
Vol 8 (1) ◽  
pp. 617-625 ◽  
Author(s):  
Li Sun ◽  
Weibang Kong ◽  
Hengcai Wu ◽  
Yang Wu ◽  
Datao Wang ◽  
...  

A binder-free composite anode constructed by anchoring mesoporous lithium titanate nanoclusters in a carbon nanotube network exhibits high capacities, long-term cyclic stability, and excellent high-rate capability.


Sign in / Sign up

Export Citation Format

Share Document