scholarly journals Modelling of an Adsorption Heat Storage System and Study of Operating and Design Conditions

Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1885
Author(s):  
Sónia Ferreira ◽  
Sabine Sochard ◽  
Sylvain Serra ◽  
Frederic Marias ◽  
Jean-Michel Reneaume

An open system based on physical adsorption phenomena with humid air and zeolite 13X is herein discussed for residential heat storage purposes. A model has been developed to describe the conservation of mass and heat in the system. A simplified approach of a complete model describing both mass conservation in the macroporous and microporous domains is used based on the linear driving force (LDF) model. Local mass and heat transfer properties have been used. To describe the equilibrium, the Aranovich–Donohue isotherm model is selected. As an example, the developed model is compared and fitted to experimental data from a pilot scale system. A parametric study on operating and design parameters is given to understand their effect on the amount and/or duration of heat supply, concentration, and temperature profiles. The studied parameters are the inlet adsorbate concentration, fluid temperature, and velocity, as well as particle and zeolite crystal sizes. This analysis shows that an identification of values for the set of parameters tested can possibly suit the energy needs for a case study of domestic heat supply. Future work will focus on the optimization of these parameters.

2017 ◽  
Vol 69 (1) ◽  
pp. 87-100
Author(s):  
Mária Minárová

Abstract The paper is motivated by the previous research concerning the heat transfer in a heat accumulation device. The device had been explored, built up and tested with the aim of utilization of cheap solar energy and its storage. In this heat storage system, a vacuum-like gap between two concentric containers acts as an insulating layer, radiation being the predominant heat transfer type in the gap. The better knowledge and understanding of the heat exchange by radiation, the more effectiveness of the insulation of the layer can be reached. Heat transfer by radiation is explored in the paper, mathematical model is set up, the algorithm of non-linear transient computation is introduced, and some illustrative results of this computation are performed.


2016 ◽  
Vol 5 (2) ◽  
pp. 165-175
Author(s):  
Seyed Masoud Sajjadian

Purpose – The purpose of this paper is to present the advantages of a solar store system with transpired solar air collector (TSC) in North Wales, UK. The collectors are designed as a proposal to meet the target of the solar air storage and heating project to improve the efficiency of solar collectors in the UK. Design/methodology/approach – IES software simulation is used to examine the potential of a solar store system in Deeside Leisure Centre compared to the traditional constant air volume (CAV) system and CAV system with heat pump. The design parameters and configurations are determined on the basis of the monitoring results gained from recent experiments. Findings – The result demonstrates good agreement between simulations and monitoring results and the solar store system demonstrates considerably lower energy consumption compared to the traditional CAV system with and without heat pump. Originality/value – The usage of TSC is proven to be useful in improving COP of the heat pumps and reducing overall energy consumption in a leisure center. The framework proposed in this study could also be applied to different building types in order to highlight their advantages.


1996 ◽  
Vol 118 (2) ◽  
pp. 89-96 ◽  
Author(s):  
M. Conti ◽  
C. Bellecci ◽  
Ch. Charach

This paper analyzes the irreversibilities due to the heat transfer processes in a latent heat thermal storage system. The Thermal Storage Module (TSM) consists of a cylindrical shell that surrounds an internal coaxial tube. The shell side is filled by a Phase Change Material (PCM); a fluid flows through the inner tube and exchanges heat along the way. The most fundamental assumption underlying this study is that the exergy of the hot fluid stream in the active phase is discharged into the environment and completely destroyed, unless it is partially intercepted by the storage system. A numerical study is conducted to identify and to minimize the thermodynamic losses of the storage and removal processes. The dependence of the second-law efficiency of the system on various design parameters is investigated and discussed.


2020 ◽  
Vol 19 (6) ◽  
pp. 471-479
Author(s):  
Salah Bezari ◽  
Sidi Mohammed El Amine Bekkouche ◽  
Ahmed Benchatti ◽  
Asma Adda ◽  
Azzedine Boutelhig

The Mediterranean area is characterized by intense radiation generating high temperatures during the day in the greenhouse and low temperatures during the night. The temperature gap problem between the daytime and the nocturnal period which characterizes the region requires the use of greenhouses with a thermal storage system. A greenhouse equipped with a sensible heat storage system using a rock-bed, was compared to a witness one, under the same climatic conditions. Measurements were performed on the microclimate parameters of both greenhouses, such as temperature and relative humidity. Our work is based on an experimental analysis of greenhouse microclimate and evaluating the evolution of temperature and relative humidity prevailing inside the greenhouse. It has been found that the system efficiency is improved due to the storing of heat in excess during the daytime. This stored energy is used during night. The main obtained results showed that the heat storage system allowed an increase in the air temperature up to 0.9℃ and a decrease of the relative humidity about 3.4% during the night compared to the witness greenhouse. The improvement in the heated greenhouse microclimate during night has a very positive impact on the quality of fruit and yield.


2005 ◽  
Vol 25 (17-18) ◽  
pp. 2903-2920 ◽  
Author(s):  
Jinjia Wei ◽  
Yasuo Kawaguchi ◽  
Satoshi Hirano ◽  
Hiromi Takeuchi

Author(s):  
Oluwole K. Bowoto ◽  
Omonigho P. Emenuvwe ◽  
Meysam N. Azadani

AbstractThis study proposes a design model for conserving and utilizing energy affordably and intermittently considering the wind rush experienced in the patronage of renewable energy sources for cheaper generation of electricity and the solar energy potential especially in continents of Africa and Asia. Essentially, the global quest for sustainable development across every sector is on the rise; hence, the need for a sustainable method of extracting energy cheaply with less wastage and pollution is on the priority list. This research, integrates and formulates different ideologies, factors and variables that have been adopted in previous research studies to create an efficient system. Some of the aforementioned researches includes pumped hydro gravity storage system, Compressed air gravity storage system, suspended weight in abandoned mine shaft, dynamic modelling of gravity energy storage coupled with a PV energy plant and deep ocean gravity energy storage. As an alternative and a modification to these systems, this research is proposing a Combined solar and gravity energy storage system. The design synthesis and computational modelling of the proposed system model were investigated using a constant height and but varying mass. Efficiencies reaching up to 62% was achieved using the chosen design experimental parameters adopted in this work. However, this efficiency can be tremendously improved upon if the design parameters are modified putting certain key factors which are highlighted in the limitation aspect of this research into consideration. Also, it was observed that for a test load of 50 × 103 mA running for 10 h (3600 s), the proposed system will only need to provide a torque of 3.27Nm and a height range of 66.1 × 104 m when a mass of 10 kg is lifted to give out power of 48 kwh. Since gravity storage requires intermittent actions and structured motions, mathematical models were used to analyse the system performance characteristics amongst other important parameters using tools like MATLAB Simscape modelling toolbox, Microsoft excel and Sysml Model software.


Sign in / Sign up

Export Citation Format

Share Document