scholarly journals Accelerating Energy Renovation Solution for Zero Energy Buildings and Neighbourhoods—The Experience of the RenoZEB Project

Proceedings ◽  
2019 ◽  
Vol 20 (1) ◽  
pp. 1 ◽  
Author(s):  
Michele Vavallo ◽  
Marco Arnesano ◽  
Gian Marco Revel ◽  
Asier Mediavilla ◽  
Ane Ferreiro Sistiaga ◽  
...  

Buildings are the key factor to transform cities and to contribute to recent European energy efficiency objectives for 2030 and long-term 2050. New buildings account to only 1–2% annually. Yet, ninety percent of the existing building stock in Europe was built before 1990, it is therefore necessary to promote their energy renovation to achieve the set objectives. Renovation solutions are available on the market, yet a wrong implementation and integration due to a lack of knowledge neither maximizes the energy performance of the post-retrofitting nor the financial optimisation and viability of the projects. This paper presents research on a plug & play, modular, easy installable façade and ICT decision making technologies to provide affordable solutions in order to overcome those deep renovation barriers. The paper sets out by defining a value framework that can be applied by real estate investors for making better retrofitting decisions for residential buildings, through mapping targeted building typologies and investigating new building revalorisation strategies, new renovation concepts and KPIs for evaluation. Thereafter the paper presents the modular and easy-to-install façade system that is replicable and scalable at European level.

2021 ◽  
Vol 13 (11) ◽  
pp. 6018
Author(s):  
Theo Lynn ◽  
Pierangelo Rosati ◽  
Antonia Egli ◽  
Stelios Krinidis ◽  
Komninos Angelakoglou ◽  
...  

The building stock accounts for a significant portion of worldwide energy consumption and greenhouse gas emissions. While the majority of the existing building stock has poor energy performance, deep renovation efforts are stymied by a wide range of human, technological, organisational and external environment factors across the value chain. A key challenge is integrating appropriate human resources, materials, fabrication, information and automation systems and knowledge management in a proper manner to achieve the required outcomes and meet the relevant regulatory standards, while satisfying a wide range of stakeholders with differing, often conflicting, motivations. RINNO is a Horizon 2020 project that aims to deliver a set of processes that, when working together, provide a system, repository, marketplace and enabling workflow process for managing deep renovation projects from inception to implementation. This paper presents a roadmap for an open renovation platform for managing and delivering deep renovation projects for residential buildings based on seven design principles. We illustrate a preliminary stepwise framework for applying the platform across the full-lifecycle of a deep renovation project. Based on this work, RINNO will develop a new open renovation software platform that will be implemented and evaluated at four pilot sites with varying construction, regulatory, market and climate contexts.


2021 ◽  
Vol 13 (24) ◽  
pp. 13934
Author(s):  
Hanan S. S. Ibrahim ◽  
Ahmed Z. Khan ◽  
Yehya Serag ◽  
Shady Attia

Retrofitting “nearly-zero energy” heritage buildings has always been controversial, due to the usual association of the “nearly-zero energy” target with high energy performance and the utilization of renewable energy sources in highly regarded cultural values of heritage buildings. This paper aims to evaluate the potential of turning heritage building stock into a “nearly-zero energy” in hot, dry climates, which has been addressed in only a few studies. Therefore, a four-phase integrated energy retrofitting methodology was proposed and applied to a sample of heritage residential building stock in Egypt along with microscale analysis on buildings. Three reference buildings were selected, representing the most dominant building typologies. The study combines field measurements and observations with energy simulations. In addition, simulation models were created and calibrated based on monitored data in the reference buildings. The results show that the application of hybrid passive and active non-energy generating scenarios significantly impacts energy use in the reference buildings, e.g., where 66.4% of annual electricity use can be saved. Moreover, the application of solar energy sources approximately covers the energy demand in the reference buildings, e.g., where an annual self-consumption of electricity up to 78% and surplus electricity up to 20.4% can be achieved by using photo-voltaic modules. Furthermore, annual natural gas of up to 66.8% can be saved by using two unglazed solar collectors. Lastly, achieving “nearly-zero energy” was possible for the presented case study area. The originality of this work lies in developing and applying an informed retrofitting (nearly-zero energy) guide to be used as a benchmark energy model for buildings that belong to an important historical era. The findings contribute to fill a gap in existing studies of integrating renewable energy sources to achieve “nearly-zero energy” in heritage buildings in hot climates.


2020 ◽  
Vol 12 (2) ◽  
pp. 642 ◽  
Author(s):  
Marta Maria Sesana ◽  
Mathieu Rivallain ◽  
Graziano Salvalai

According to its strategic long-term vision, Europe wants to be a climate-neutral economy by 2050. Buildings play a crucial role in this vision, and they represent a sector with low-cost opportunities for high-level CO2 reduction. The challenge the renovation of the existing building stock, which must be increased to 3%/year, more than double compared to the current 1.2%/year. In this context, the ALliance for Deep RENovation (ALDREN) project has the goal of encouraging property owners to undertake renovation of existing buildings using a clear, robust, and comparable method. This paper aims to present the ALDREN approach and the ALDREN Building Renovation Passport (BRP), giving an overview of the connections and data links to other existing databases and certification schemes. To understand the data value potential of buildings, one requires reliable and trustworthy information. The Building Renovation Passport, introduced by the recent Energy Performance Building Directive (EPBD) recast 844/2018/EU, aims to provide this information. This paper presents the experience of the ALDREN BRP for non-residential buildings as well as the development procedure for its data model and the potential that this tool could have for the construction market. The ALDREN BRP has been structured into two main parts—BuildLog and RenoMap—with a common language that facilitates communication on the one hand and, on the other, the setting of renovation targets based on lifetime, operation, and user needs.


2017 ◽  
Vol 35 (1) ◽  
pp. 16-40 ◽  
Author(s):  
Sheikh Zuhaib ◽  
Richard Manton ◽  
Magdalena Hajdukiewicz ◽  
Marcus M. Keane ◽  
Jamie Goggins

Purpose There is profound demand for higher skills and expertise in retrofitting the existing building stock of Europe. The delivery of low- or nearly zero-energy retrofits is highly dependent on technical expertise, adoption of new materials, methods of construction and innovative technologies. Future Irish national building regulations will adopt the Energy Performance of Buildings Directive vision of retrofitting existing buildings to higher energy efficiency standards. Construction industry stakeholders are key for the achievement of energy performance targets. Specifically, the purpose of this paper is to assess the attitudes, approaches and experiences of Irish construction professionals regarding energy efficient buildings, particularly nearly zero-energy buildings (nZEBs). Design/methodology/approach Data were collected through a series of quantitative and qualitative methods, including a survey, a workshop and detailed interviews with professionals in the retrofit industry. The structure of this approach was informed by preliminary data and information available on the Irish construction sector. Findings There is a substantial amount of ambiguity and reluctance among the professionals in reaching the Irish nZEB targets. The growing retrofit industry demonstrates low-quality auditing and pre/post-retrofit analysis. Basic services and depth of retrofits are compromised by project budgets and marginal profits. Unaligned value supply chain, poor interaction among nZEB professionals and fragmented services are deterrents to industry standardisation. Practical implications This study will enable construction industry stakeholders to make provisions for overcoming the barriers, gaps and challenges identified in the practices of the retrofit projects. It will also inform the formulation of policies that drive retrofit uptake. Social implications This study has implications for understanding the social barriers existing in retrofit projects. Support from clients/owners has a diverse impact on energy performance and retrofit decisions. Community-based initiatives are key to unlock the promotion of nZEBs. Originality/value This paper provides an overview of current activities of retrofit professionals and analyses the barriers, gaps and challenges in the industry.


2016 ◽  
Vol 861 ◽  
pp. 585-592
Author(s):  
Ivan Chmúrny

Building energy design is currently going through a period of major changes. One key factor of this is the adoption of nearly zero energy buildings as a long term goal for new buildings in most developed countries. To achieve this goal a lot of research is needed to accumulate knowledge and to utilize it in practical applications. Paper summarizes criteria and indicators prepared in law and technical documents in Slovakia.


Author(s):  
Michael Keltsch ◽  
Werner Lang ◽  
Thomas Auer

The Energy Performance of Buildings Directive 2010 calls for the Nearly Zero Energy Standard for new buildings from 2021 onwards: Buildings using “almost no energy” are powered by renewable sources or energy produced by the building itself. For residential buildings, this ambitious new standard has already been reached. But for other building types this goal is still far away. The potential of these buildings to meet a Nearly Zero Energy Standard was investigated by analyzing ten case studies representing non-residential buildings with different uses. The analysis shows that the primary characteristics common to critical building types are a dense building context with a very high degree of technical installation (such as hospital, research and laboratory buildings). The large primary energy demand of these types of buildings cannot be compensated by building and property-related energy generation including off-site renewables. If the future Nearly Zero Energy Standard were to be defined with lower requirements because of this, the state related properties of Bavaria suggest that the real potential energy savings available in at least 85% of all new buildings would be insufficiently exploited. Therefore, it would be useful to instead individualize the legal energy verification process for new buildings to distinguish critical building types such as laboratories and hospitals.


2019 ◽  
Vol 111 ◽  
pp. 06027
Author(s):  
Francesco Causone ◽  
Martina Pelle

The urbanization process is constantly increasing worldwide. Today over 50 % of the population resides in urban areas and this value is expected to grow up to 68 % by 2050. In this scenario, the development of district scale energy grids and management systems has become crucial to optimize energy use and to balance energy flows within the cities, encouraging the use of renewable sources and self-consumption. This study focusses on a district under development in the city of Milan, involving an urban area of about 920 000 m2, which, once completed, will count for about 4 500 apartments, a school and a few other commercial uses. The existing energy systems consist of an electric grid, including a small photovoltaic field, a district heating system and a local district cooling system exploiting groundwater via heat pumps. They serve, at present, seven residential tower buildings (400 apartments). The overarching aim of the research is to evolve the existing grid into a smart energy grid able to guarantee an intelligent management of the district, empowering eventually people to apply for demand-response schemes, electric mobility and other innovative services. In order to perform such an improvement and extension of the exiting grid, it is necessary to evaluate and simulate the profiles and dynamics of the final energy uses for the residential buildings, that will represent the major load on site. Since monitoring data are not yet available for the district, the evaluation of the energy performance of the existing buildings has been developed through dynamic energy simulations via the definition of profile loads of the most frequent apartment typologies, that allow, moreover, to simulate further developments in the districts. Besides, a monitoring plan for the existing systems has been developed and implemented. Monitoring data will be used at first for validating the developed load profiles; then, they will be analysed to develop optimisation algorithms for the management of the upgraded energy grid. In this paper, the case study is presented and the results of the analysis, via energy simulation, on the existing building stock are reported.


Author(s):  
Michael Keltsch ◽  
Werner Lang ◽  
Thomas Auer

The Energy Performance of Buildings Directive 2010 calls for the Nearly Zero Energy Standard for new buildings from 2021 onwards: Buildings using “almost no energy” are powered by renewable sources or energy produced by the building itself. For residential buildings, this ambitious new standard has already been reached. But for other building types this goal is still far away. The potential of these buildings to meet a Nearly Zero Energy Standard was investigated by analyzing ten case studies representing non-residential buildings with different uses. The analysis shows that the primary characteristics common to critical building types are a dense building context with a very high degree of technical installation (such as hospital, research and laboratory buildings). The large primary energy demand of these types of buildings cannot be compensated by building and property-related energy generation including off-site renewables. If the future Nearly Zero Energy Standard were to be defined with lower requirements because of this, the state related properties of Bavaria suggest that the real potential energy savings available in at least 85% of all new buildings would be insufficiently exploited. Therefore, it would be useful to instead individualize the legal energy verification process for new buildings to distinguish critical building types such as laboratories and hospitals.


2021 ◽  
Vol 11 (24) ◽  
pp. 12150
Author(s):  
Lelia Letitia Popescu ◽  
Razvan Stefan Popescu ◽  
Tiberiu Catalina

Nowadays, the enhancement of the existing building stock energy performance is a priority. To promote building energy renovation, the European Committee asks Member States to define retrofit strategies, finding cost-effective solutions. This research aims to investigate the relationship between the initial characteristics of an existing residential buildings and different types of retrofit solutions in terms of final/primary energy consumption and CO2 emissions. A multi-objective optimization has been carried out using experimental data in DesignBuilder dynamic simulation tool.


Author(s):  
Annarita Ferrante ◽  
Fabrizio Ungaro ◽  
Giovanni Semprini ◽  
Lorna Dragonetti ◽  
Elettra Agliardi ◽  
...  

<p>and international projects</p><p>various EU H2020 projects</p><p>Though housing is one of the most energy consumer sectors, it is currently extremely underestimated, because of a clear investment gap due to economic, social and legislative barriers. The EU project ABRACADABRA (Assistant Building to Retrofit, Adopt, Cure And Develop the Actual Buildings up to zeRo energy, Activating a market for deep renovation) is based on the idea that the real estate value increase given by the appropriate densification strategy in urban environments could be an opportunity to activate a market for deep energy renovation. To prove the effectiveness of the strategy more than 70 case studies throughout the EU cities have been assessed by means of a cost-effective analysis. Basing on the parametric variation of the different values involved (cost of construction, energy, etc.) the benefit of this strategy has been proved in the majority of the different building types and contexts.</p><p>More interestingly, the ABRA strategy has been simulated and tested outside Europe in order to verify its scalability and the possibility of considering other non-energy related benefits in the renovation of the existing building stock. A specific study on the NYC urban context has been conducted to effectively adapt the strategy and combine the global drivers of energy consumption reduction and CO<span>2</span> emission reduction with the local need of combating flood emergency and related flood-proofing measures.</p><p>The results reached by this work demonstrate how the energy retrofit trough add-ons reduces significantly the payback times of the investments, preserve soil consumption, while providing a extraordinary opportunity to enhance urban resiliency by challenging the local emergencies.</p>


Sign in / Sign up

Export Citation Format

Share Document