scholarly journals Spectral Explanation for Statistical Odd-Even Staggering in Few Fermions Systems

2021 ◽  
Vol 3 (1) ◽  
pp. 166-172 ◽  
Author(s):  
Angelo Plastino ◽  
Gustavo Luis Ferri ◽  
Angel Ricardo Plastino

Odd-even statistical staggering in a Lipkin-like few fermions model has been recently encountered. Of course, staggering in nuclear binding energies is a well established fact. Similar effects are detected in other finite fermion systems as well, as for example, ultra small metallic grains and metal clusters. We work in this effort with the above-mentioned Lipkin-like, two-level fermion model and show that statistical staggering effects can be detailedly explained by recourse to a straightforward analysis of the associated energy-spectra.

Author(s):  
F. Pennini ◽  
A. Plastino ◽  
G. L. Ferri ◽  
M. C. Arizmendi

The odd-even staggering (OES) in nuclear binding energies is a well-known fact. A rather similar effect can be found in other finite fermion systems. For instance, ultra small metallic grains and metal clusters. The staggering in nuclei and grains is attributed primarily to pairing correlations. In clusters, it is originated by the Jahn–Teller effect [Phys. Rev. Lett. 81, 3599 (1998)]. Here, we work with a simple, Lipkin-like, exactly solvable two-level fermion model. A statistical mechanics’ treatment of it shows that OES effects also emerge here, as revealed by theoretical tools connected with the so-called statistical complexity.


2004 ◽  
Vol 13 (01) ◽  
pp. 247-260
Author(s):  
LIS BRACK-BERNSEN ◽  
MATTHIAS BRACK

We investigate "shell structure" from Babylonian times: periodicities and beats in computer-simulated lunar data corresponding to those observed by Babylonian scribes some 2500 years ago. We discuss the mathematical similarity between the Babylonians' recently reconstructed method of determining one of the periods of the moon with modern Fourier analysis and the interpretation of shell structure in finite fermion systems (nuclei, metal clusters, quantum dots) in terms of classical closed or periodic orbits.


2006 ◽  
Vol 15 (02) ◽  
pp. 339-345 ◽  
Author(s):  
F. CHAPPERT ◽  
M. GIROD

A new parameterization of the effective Gogny interaction is investigated. It has the property of fitting the neutron matter Equation Of State (EOS) as predicted by a variational calculation. Its properties in nuclear matter (saturation point, compressibility, …) and in nuclei (binding energies) are presented.


2005 ◽  
Vol 95 (4) ◽  
Author(s):  
Yu. A. Litvinov ◽  
T. J. Bürvenich ◽  
H. Geissel ◽  
Yu. N. Novikov ◽  
Z. Patyk ◽  
...  

1939 ◽  
Vol 55 (8) ◽  
pp. 691-698 ◽  
Author(s):  
Walter H. Barkas

Sign in / Sign up

Export Citation Format

Share Document