scholarly journals A 1900 Year Sediment Record Suggests Recent Establishment of Black Mangrove (Avicennia Germinans) Stands within a Salt Marsh in St. Augustine, Florida, USA

Quaternary ◽  
2022 ◽  
Vol 5 (1) ◽  
pp. 2
Author(s):  
Jessica Chamberlin ◽  
Camryn Soehnlein ◽  
Jason Evans ◽  
Benjamin Tanner

Salt marshes and mangroves are currently being affected by rising temperatures. Mangroves thrive below −29° N latitude in Florida, USA, and have a low tolerance for extreme cold events, whereas salt marshes dominate further north. One potential effect of climate change is a reduction in the frequency of extreme cold events, which may lead to mangrove expansion into salt marsh systems. Our research identified sediment proxy indicators of salt marsh and mangrove environments. These indicators were applied to soil cores from intertidal wetlands near the current northern limit of mangrove presence on the east coast of Florida, to determine if mangrove expansion into salt marsh environments has precedence in the deeper past. Our findings suggest that mangrove and salt marsh sediments can be distinguished using a combination of stable carbon isotope ratios of sedimentary organic matter and macroscopic plant fragments, and our results showed that a mangrove stand that we cored established only recently. This result is consistent with other work in the southeastern United States that suggests that mangroves established at the current boreal limit only recently after the end of the Little Ice Age, and that the current mangrove expansion may be fueled by anthropogenic climate change.

2017 ◽  
Vol 6 (1) ◽  
Author(s):  
Chunfang Zheng ◽  
Jianwu Tang ◽  
Jinong Chen ◽  
Weicheng Liu ◽  
Jianbiao Qiu ◽  
...  

2016 ◽  
Vol 5 (1) ◽  
Author(s):  
Chunfang Zheng ◽  
Jianwu Tang ◽  
Jinong Chen ◽  
Weicheng Liu ◽  
Jianbiao Qiu ◽  
...  

2019 ◽  
Vol 116 (43) ◽  
pp. 21602-21608 ◽  
Author(s):  
Kyle C. Cavanaugh ◽  
Emily M. Dangremond ◽  
Cheryl L. Doughty ◽  
A. Park Williams ◽  
John D. Parker ◽  
...  

Climate change is driving the tropicalization of temperate ecosystems by shifting the range edges of numerous species poleward. Over the past few decades, mangroves have rapidly displaced salt marshes near multiple poleward mangrove range limits, including in northeast Florida. It is uncertain whether such mangrove expansions are due to anthropogenic climate change or natural climate variability. We combined historical accounts from books, personal journals, scientific articles, logbooks, photographs, and maps with climate data to show that the current ecotone between mangroves and salt marshes in northeast Florida has shifted between mangrove and salt marsh dominance at least 6 times between the late 1700s and 2017 due to decadal-scale fluctuations in the frequency and intensity of extreme cold events. Model projections of daily minimum temperature from 2000 through 2100 indicate an increase in annual minimum temperature by 0.5 °C/decade. Thus, although recent mangrove range expansion should indeed be placed into a broader historical context of an oscillating system, climate projections suggest that the recent trend may represent a more permanent regime shift due to the effects of climate change.


2021 ◽  
Vol 11 (4) ◽  
pp. 1969
Author(s):  
Bernardo Duarte ◽  
João Carreiras ◽  
Isabel Caçador

Salt marshes are valuable ecosystems, as they provide food, shelter, and important nursery areas for fish and macroinvertebrates, and a wide variety of ecosystem services for human populations. These ecosystem services heavily rely on the floristic composition of the salt marshes with different species conferring different service values and different adaptation and resilience capacities towards ecosystem stressors. Blue carbon, nitrogen, and phosphorous stocks are no exception to this, and rely on the interspecific differences in the primary production metabolism and physiological traits. Furthermore, these intrinsic physiological characteristics also modulate the species response to any environmental stressor, such as the ones derived from ongoing global changes. This will heavily shape transitional ecosystem services, with significant changes of the ecosystem value of the salt marshes in terms of cultural, provisioning, regulating, and supporting ecosystem services, with a special emphasis on the possible alterations of the blue carbon, nitrogen, and phosphorous stocks retained in these key environments. Thus, the need to integrate plant physiological characteristics and feedbacks towards the expected climate change-driven stressors becomes evident to accurately estimate the ecosystem services of the salt marsh community, and transfer these fundamental services into economic assets, for a fluid communication of the ecosystems value to stakeholders, decision and policy makers, and environmental management entities.


2013 ◽  
Vol 19 (9) ◽  
pp. 2765-2774 ◽  
Author(s):  
Hongyu Guo ◽  
Yihui Zhang ◽  
Zhenjiang Lan ◽  
Steven C. Pennings

2021 ◽  
Vol 135 (2) ◽  
pp. 192-202
Author(s):  
Yves Turcotte ◽  
Jean-François Lamarre ◽  
Éliane Duchesne ◽  
Joël Bêty

Salt marshes are vulnerable to climate change-associated sea-level rise and storm-induced surges. Their degradation will likely affect shorebirds relying on this ecosystem. Least Sandpiper (Calidris minutilla) and Pectoral Sandpiper (Calidris melanotos) migrating along coastline habitats typically use salt marshes to rest and replenish their body reserves. Our objective was to test if width of the different vegetation zones within salt marshes affects the occurrence of Least and Pectoral Sandpipers stopping along the St. Lawrence River Estuary, Quebec, Canada, during fall migration. We established 26 survey sites, each 600 m in length, along the shoreline. Shorebird surveys were conducted in 2011 and 2012. We characterized salt marshes by measuring the width of each vegetation zone (lower marsh and upper marsh). We analyzed shorebird presence/not detected data with generalized estimating equations to test the predictions that occurrence of Least Sandpipers and Pectoral Sandpipers increases with width of both the lower and upper marsh. Upper marsh width was positively associated with probability of occurrence in each species. Our results highlight the importance of protecting the integrity of salt marshes for these two species. In the St. Lawrence River Estuary, where landward migration of salt marshes is no longer possible (coastal squeeze), effective management of shorelines is much needed. Otherwise, salt marshes and these two species could be locally jeopardized.


2020 ◽  
Vol 12 (1) ◽  
pp. 389-413 ◽  
Author(s):  
Patricia L. Wiberg ◽  
Sergio Fagherazzi ◽  
Matthew L. Kirwan

Salt marshes are recognized as valuable resources that are threatened by climate change and human activities. Better management and planning for these ecosystems will depend on understanding which marshes are most vulnerable, what is driving their change, and what their future trajectory is likely to be. Both observations and models have provided inconsistent answers to these questions, likely in part because of comparisons among sites and/or models that differ significantly in their characteristics and processes. Some of these differences almost certainly arise from processes that are not fully accounted for in marsh morphodynamic models. Here, we review distinguishing properties of marshes, important processes missing from many morphodynamic models, and key measurements missing from many observational studies. We then suggest some comparisons between models and observations that will provide critical tests and insights to improve our ability to forecast future change in these coastal landscapes.


2020 ◽  
Vol 645 ◽  
pp. 187-204
Author(s):  
PJ Rudershausen ◽  
JA Buckel

It is unclear how urbanization affects secondary biological production in estuaries in the southeastern USA. We estimated production of larval/juvenile Fundulus heteroclitus in salt marsh areas of North Carolina tidal creeks and tested for factors influencing production. F. heteroclitus were collected with a throw trap in salt marshes of 5 creeks subjected to a range of urbanization intensities. Multiple factor analysis (MFA) was used to reduce dimensionality of habitat and urbanization effects in the creeks and their watersheds. Production was then related to the first 2 dimensions of the MFA, month, and year. Lastly, we determined the relationship between creek-wide larval/juvenile production and abundance from spring and abundance of adults from autumn of the same year. Production in marsh (g m-2 d-1) varied between years and was negatively related to the MFA dimension that indexed salt marsh; higher rates of production were related to creeks with higher percentages of marsh. An asymptotic relationship was found between abundance of adults and creek-wide production of larvae/juveniles and an even stronger density-dependent relationship was found between abundance of adults and creek-wide larval/juvenile abundance. Results demonstrate (1) the ability of F. heteroclitus to maintain production within salt marsh in creeks with a lesser percentage of marsh as long as this habitat is not removed altogether and (2) a density-dependent link between age-0 production/abundance and subsequent adult recruitment. Given the relationship between production and marsh area, natural resource agencies should consider impacts of development on production when permitting construction in the southeastern USA.


The Holocene ◽  
2021 ◽  
pp. 095968362110116
Author(s):  
Maegen L Rochner ◽  
Karen J Heeter ◽  
Grant L Harley ◽  
Matthew F Bekker ◽  
Sally P Horn

Paleoclimate reconstructions for the western US show spatial variability in the timing, duration, and magnitude of climate changes within the Medieval Climate Anomaly (MCA, ca. 900–1350 CE) and Little Ice Age (LIA, ca. 1350–1850 CE), indicating that additional data are needed to more completely characterize late-Holocene climate change in the region. Here, we use dendrochronology to investigate how climate changes during the MCA and LIA affected a treeline, whitebark pine ( Pinus albicaulis Engelm.) ecosystem in the Greater Yellowstone Ecoregion (GYE). We present two new millennial-length tree-ring chronologies and multiple lines of tree-ring evidence from living and remnant whitebark pine and Engelmann spruce ( Picea engelmannii Parry ex. Engelm.) trees, including patterns of establishment and mortality; changes in tree growth; frost rings; and blue-intensity-based, reconstructed summer temperatures, to highlight the terminus of the LIA as one of the coldest periods of the last millennium for the GYE. Patterns of tree establishment and mortality indicate conditions favorable to recruitment during the latter half of the MCA and climate-induced mortality of trees during the middle-to-late LIA. These patterns correspond with decreased growth, frost damage, and reconstructed cooler temperature anomalies for the 1800–1850 CE period. Results provide important insight into how past climate change affected important GYE ecosystems and highlight the value of using multiple lines of proxy evidence, along with climate reconstructions of high spatial resolution, to better describe spatial and temporal variability in MCA and LIA climate and the ecological influence of climate change.


Sign in / Sign up

Export Citation Format

Share Document