scholarly journals A Reconfiguration Algorithm for the Single-Driven Hexapod-Type Parallel Mechanism

Robotics ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 8
Author(s):  
Alexey Fomin ◽  
Anton Antonov ◽  
Victor Glazunov

This paper presents a hexapod-type reconfigurable parallel mechanism that operates from a single actuator. The mechanism design allows reproducing diverse output link trajectories without using additional actuators. The paper provides the kinematic analysis where the analytical relationships between the output link coordinates and actuated movement are determined. These relations are used next to develop an original and computationally effective algorithm for the reconfiguration procedure. The algorithm enables selecting mechanism parameters to realize a specific output link trajectory. Several examples demonstrate the implementation of the proposed techniques. CAD simulations on a mechanism virtual prototype verify the correctness of the suggested algorithm.

2010 ◽  
Vol 4 (4) ◽  
pp. 346-354 ◽  
Author(s):  
Yukio Takeda ◽  
◽  
Xiao Xiao ◽  
Kazuya Hirose ◽  
Yoshiki Yoshida ◽  
...  

The present paper proposes a new six-DOF parallel mechanism with three connecting chains. This mechanism can have a large angle of orientation of the output link. Joints in each connecting chain are arranged from the base in order of revolute, prismatic, spherical and revolute joints. All three revolute joints on the base are coaxial. With this structure, the output link can perform a full rotation around the vertical axis. The orientation capability of this mechanism is demonstrated. Equations for displacement analysis and the Jacobian matrix are derived. A design and prototype of this mechanism for a pipe-bender are shown.


Author(s):  
Shiyu Xiao ◽  
Hongguang Wang ◽  
Guowei Liu

To meet the requirements of mechanical dimensions, climbing performance and obstacle negotiation capability of an inspection robot on the long-span transmission line, a novel inspection robot with four arms is designed by drawing on the research on human being’s climbing on a tree. Firstly, according to its kinematical characteristics we learned from human being’s tree climbing, the mechanism configuration of the robot on the transmission line is introduced and methods of overcoming two typical obstacles are planned. Then, its main structural parameters are provided, its kinematics equation is derived, and the analysis of kinematics performances such as grade ability and obstacle overcoming is carried out to verify the feasibility of the mechanism design. Finally, experiments on movement are conducted on the platform of virtual prototype. The results indicate that the robot has such features as excellent grade ability and obstacle overcoming performance.


2015 ◽  
Vol 39 (3) ◽  
pp. 637-646
Author(s):  
Ren-Chung Soong

A hybrid-driven five-bar linkage mechanism with one input cycle corresponding to two output cycles is presented. The proposed linkage mechanism is driven by a constant-speed motor and a linear motor, respectively. The output link can generate two same required output cycles during a single input cycle, while the rotational input link rotates with a constant angular speed, and the linear input link follows a reciprocating motion along a specified linear guide fixed on the rotational input link. The configuration, displacement relationship between the input and output links, and conditions of mobility of this proposed mechanism were studied, and a kinematic analysis was performed. The selection of the instantaneous motion trajectory of the linear input link and an optimal dimensional synthesis are also described. An example is provided to verify the feasibility and effectiveness of this methodology.


Author(s):  
DU Hui ◽  
GAO Feng ◽  
PAN Yang

A novel 3-UP3R parallel mechanism with six degree of freedoms is proposed in this paper. One most important advantage of this mechanism is that the three translational and three rotational motions are partially decoupled: the end-effector position is only determined by three inputs, while the rotational angles are relative to all six inputs. The design methodology via GF set theory is brought out, using which the limb type can be determined. The mobility of the end-effector is analyzed. After that, the kinematic and velocity models are formulated. Then, workspace is studied, and since the robot is partially decoupled, the reachable workspace is also the dexterous workspace. In the end, both local and global performances are discussed using conditioning indexes. The experiment of real prototype shows that this mechanism works well and may be applied in many fields.


2013 ◽  
Vol 816-817 ◽  
pp. 821-824
Author(s):  
Xue Mei Niu ◽  
Guo Qin Gao ◽  
Zhi Da Bao

Kinematic analysis plays an important role in the research of parallel kinematic mechanism. This paper addresses a novel forward kinematic solution based on RBF neural network for a novel 2PRRR-PPRR redundantly actuated parallel mechanism. Simulation results illustrate the validity and feasibility of the kinematic analysis method.


Author(s):  
Jérôme Landuré ◽  
Clément Gosselin

This article presents the kinematic analysis of a six-degree-of-freedom six-legged parallel mechanism of the 6-PUS architecture. The inverse kinematic problem is recalled and the Jacobian matrices are derived. Then, an algorithm for the geometric determination of the workspace is presented, which yields a very fast and accurate description of the workspace of the mechanism. Singular boundaries and a transmission ratio index are then introduced and studied for a set of architectural parameters. The proposed analysis yields conceptual architectures whose properties can be adjusted to fit given applications.


2014 ◽  
Vol 910 ◽  
pp. 344-347
Author(s):  
Deng Yun Ma ◽  
Tao Tao Li ◽  
Ke Sun ◽  
Jun Liang Wang ◽  
Ling Wan Li ◽  
...  

In view of the traditional low mechanization,degree of automation and lack of humanization etc, a n-ew intelligent and efficient pesticide spraying machine can be created to add pesticide to cotton.Completed parametric design of the device's virtual prototype by SolidWorks,and we apply virtual prototyping technologyto key parts to go on dynamics simulation analysis,to verify the reasonableness of this mechanism design and correctness of the function to achieve.


Sign in / Sign up

Export Citation Format

Share Document