scholarly journals Fusion of MODIS and Landsat-Like Images for Daily High Spatial Resolution NDVI

2020 ◽  
Vol 12 (8) ◽  
pp. 1297
Author(s):  
Roberto Filgueiras ◽  
Everardo Chartuni Mantovani ◽  
Elpídio Inácio Fernandes-Filho ◽  
Fernando França da Cunha ◽  
Daniel Althoff ◽  
...  

One of the obstacles in monitoring agricultural crops is the difficulty in understanding and mapping rapid changes of these crops. With the purpose of addressing this issue, this study aimed to model and fuse the Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) using Landsat-like images to achieve daily high spatial resolution NDVI. The study was performed for the period of 2017 on a commercial farm of irrigated maize-soybean rotation in the western region of the state of Bahia, Brazil. To achieve the objective, the following procedures were performed: (i) Landsat-like images were upscaled to match the Landsat-8 spatial resolution (30 m); (ii) the reflectance of Landsat-like images was intercalibrated using the Landsat-8 as a reference; (iii) Landsat-like reflectance images were upscaled to match the MODIS sensor spatial resolution (250 m); (iv) regression models were trained daily to model MODIS NDVI using the upscaled Landsat-like reflectance images (250 m) of the closest day as the input; and (v) the intercalibrated version of the Landsat-like images (30 m) used in the previous step was used as the input for the trained model, resulting in a downscaled MODIS NDVI (30 m). To determine the best fitting model, we used the following statistical metrics: coefficient of determination (r2), root mean square error (RMSE), Nash–Sutcliffe efficiency index (NSE), mean bias error (MBE), and mean absolute error (MAE). Among the assessed regression models, the Cubist algorithm was sensitive to changes in agriculture and performed best in modeling of the Landsat-like MODIS NDVI. The results obtained in the present research are promising and can enable the monitoring of dynamic phenomena with images available free of charge, changing the way in which decisions are made using satellite images.

2021 ◽  
Vol 13 (15) ◽  
pp. 2996
Author(s):  
Qinwei Zhang ◽  
Mingqi Li ◽  
Maohua Wang ◽  
Arthur Paul Mizzi ◽  
Yongjian Huang ◽  
...  

High spatial resolution carbon dioxide (CO2) flux inversion systems are needed to support the global stocktake required by the Paris Agreement and to complement the bottom-up emission inventories. Based on the work of Zhang, a regional CO2 flux inversion system capable of assimilating the column-averaged dry air mole fractions of CO2 (XCO2) retrieved from Orbiting Carbon Observatory-2 (OCO-2) observations had been developed. To evaluate the system, under the constraints of the initial state and boundary conditions extracted from the CarbonTracker 2017 product (CT2017), the annual CO2 flux over the contiguous United States in 2016 was inverted (1.08 Pg C yr−1) and compared with the corresponding posterior CO2 fluxes extracted from OCO-2 model intercomparison project (OCO-2 MIP) (mean: 0.76 Pg C yr−1, standard deviation: 0.29 Pg C yr−1, 9 models in total) and CT2017 (1.19 Pg C yr−1). The uncertainty of the inverted CO2 flux was reduced by 14.71% compared to the prior flux. The annual mean XCO2 estimated by the inversion system was 403.67 ppm, which was 0.11 ppm smaller than the result (403.78 ppm) simulated by a parallel experiment without assimilating the OCO-2 retrievals and closer to the result of CT2017 (403.29 ppm). Independent CO2 flux and concentration measurements from towers, aircraft, and Total Carbon Column Observing Network (TCCON) were used to evaluate the results. Mean bias error (MBE) between the inverted CO2 flux and flux measurements was 0.73 g C m−2 d−1, was reduced by 22.34% and 28.43% compared to those of the prior flux and CT2017, respectively. MBEs between the CO2 concentrations estimated by the inversion system and concentration measurements from TCCON, towers, and aircraft were reduced by 52.78%, 96.45%, and 75%, respectively, compared to those of the parallel experiment. The experiment proved that CO2 emission hotspots indicated by the inverted annual CO2 flux with a relatively high spatial resolution of 50 km consisted well with the locations of most major metropolitan/urban areas in the contiguous United States, which demonstrated the potential of combing satellite observations with high spatial resolution CO2 flux inversion system in supporting the global stocktake.


2020 ◽  
Vol 12 (12) ◽  
pp. 2015 ◽  
Author(s):  
Manuel Ángel Aguilar ◽  
Rafael Jiménez-Lao ◽  
Abderrahim Nemmaoui ◽  
Fernando José Aguilar ◽  
Dilek Koc-San ◽  
...  

Remote sensing techniques based on medium resolution satellite imagery are being widely applied for mapping plastic covered greenhouses (PCG). This article aims at testing the spectral consistency of surface reflectance values of Sentinel-2 MSI (S2 L2A) and Landsat 8 OLI (L8 L2 and the pansharpened and atmospherically corrected product from L1T product; L8 PANSH) data in PCG areas located in Spain, Morocco, Italy and Turkey. The six corresponding bands of S2 and L8, together with the normalized difference vegetation index (NDVI), were generated through an OBIA approach for each PCG study site. The coefficient of determination (r2) and the root mean square error (RMSE) were computed in sixteen cloud-free simultaneously acquired image pairs from the four study sites to evaluate the coherence between the two sensors. It was found that the S2 and L8 correlation (r2 > 0.840, RMSE < 9.917%) was quite good in most bands and NDVI. However, the correlation of the two sensors fluctuated between study sites, showing occasional sun glint effects on PCG roofs related to the sensor orbit and sun position. Moreover, higher surface reflectance discrepancies between L8 L2 and L8 PANSH data, mainly in the visible bands, were always observed in areas with high-level aerosol values derived from the aerosol quality band included in the L8 L2 product (SR aerosol). In this way, the consistency between L8 PANSH and S2 L2A was improved mainly in high-level aerosol areas according to the SR aerosol band.


2021 ◽  
Vol 42 (4) ◽  
pp. 2181-2202
Author(s):  
Taiara Souza Costa ◽  
◽  
Robson Argolo dos Santos ◽  
Rosângela Leal Santos ◽  
Roberto Filgueiras ◽  
...  

This study proposes to estimate the actual crop evapotranspiration, using the SAFER model, as well as calculate the crop coefficient (Kc) as a function of the normalized difference vegetation index (NDVI) and determine the biomass of an irrigated maize crop using images from the Operational Land Imager (OLI) and Thermal Infrared (TIRS) sensors of the Landsat-8 satellite. Pivots 21 to 26 of a commercial farm located in the municipalities of Bom Jesus da Lapa and Serra do Ramalho, west of Bahia State, Brazil, were selected. Sowing dates for each pivot were arranged as North and South or East and West, with cultivation starting firstly in one of the orientations and subsequently in the other. The relationship between NDVI and the Kc values obtained in the FAO-56 report (KcFAO) revealed a high coefficient of determination (R2 = 0.7921), showing that the variance of KcFAO can be explained by NDVI in the maize crop. Considering the center pivots with different planting dates, the crop evapotranspiration (ETc) pixel values ranged from 0.0 to 6.0 mm d-1 during the phenological cycle. The highest values were found at 199 days of the year (DOY), corresponding to around 100 days after sowing (DAS). The lowest BIO values occur at 135 DOY, at around 20 DAS. There is a relationship between ETc and BIO, where the DOY with the highest BIO are equivalent to the days with the highest ETc values. In addition to this relationship, BIO is strongly influenced by soil water availability.


2018 ◽  
Vol 156 (1) ◽  
pp. 24-36 ◽  
Author(s):  
Y. Palchowdhuri ◽  
R. Valcarce-Diñeiro ◽  
P. King ◽  
M. Sanabria-Soto

AbstractRemote sensing (RS) offers an efficient and reliable means to map features on Earth. Crop type mapping using RS at various temporal and spatial resolutions plays an important role spanning from environmental to economical. The main objective of the current study was to evaluate the significance of optical data in a multi-temporal crop type classification-based on very high spatial resolution and high spatial resolution imagery. With this aim, three images from WorldView-3 and Sentinel-2 were acquired over Coalville (UK) between April and July 2016. Three vegetation indices (VIs); the normalized difference vegetation index, the green normalized difference vegetation index and soil adjusted vegetation index were generated using red, green and near-infrared spectral bands; then a supervised classification was performed using ground reference data collected from field surveys, Random forest (RF) and decision tree (DT) classification algorithms. Accuracy assessment was undertaken by comparing the classified output with the reference data. An overall accuracy of 91% and κ coefficient of 0·90 were estimated using the combination of RF and DT classification algorithms. Therefore, it can be concluded that integrating very high- and high-resolution imagery with different VIs can be implemented effectively to produce large-scale crop maps even with a limited temporal-dataset.


CERNE ◽  
2017 ◽  
Vol 23 (4) ◽  
pp. 413-422 ◽  
Author(s):  
Eduarda Martiniano de Oliveira Silveira ◽  
José Márcio de Mello ◽  
Fausto Weimar Acerbi Júnior ◽  
Aliny Aparecida dos Reis ◽  
Kieran Daniel Withey ◽  
...  

ABSTRACT Assuming a relationship between landscape heterogeneity and measures of spatial dependence by using remotely sensed data, the aim of this work was to evaluate the potential of semivariogram parameters, derived from satellite images with different spatial resolutions, to characterize landscape spatial heterogeneity of forested and human modified areas. The NDVI (Normalized Difference Vegetation Index) was generated in an area of Brazilian amazon tropical forest (1,000 km²). We selected samples (1 x 1 km) from forested and human modified areas distributed throughout the study area, to generate the semivariogram and extract the sill (σ²-overall spatial variability of the surface property) and range (φ-the length scale of the spatial structures of objects) parameters. The analysis revealed that image spatial resolution influenced the sill and range parameters. The average sill and range values increase from forested to human modified areas and the greatest between-class variation was found for LANDSAT 8 imagery, indicating that this image spatial resolution is the most appropriate for deriving sill and range parameters with the intention of describing landscape spatial heterogeneity. By combining remote sensing and geostatistical techniques, we have shown that the sill and range parameters of semivariograms derived from NDVI images are a simple indicator of landscape heterogeneity and can be used to provide landscape heterogeneity maps to enable researchers to design appropriate sampling regimes. In the future, more applications combining remote sensing and geostatistical features should be further investigated and developed, such as change detection and image classification using object-based image analysis (OBIA) approaches.


2019 ◽  
Vol 11 (20) ◽  
pp. 2390 ◽  
Author(s):  
Hao ◽  
Zhao ◽  
Zhang ◽  
Wang ◽  
Jiang

The southern part of the Hebei Province is one of China’s major crop-producing regions. Due to the continuous decline in groundwater level, agricultural water use is facing significant challenges. Precision agricultural irrigation management is undoubtedly an effective way to solve this problem. Based on multisource data (time series soil moisture active passive (SMAP) data, Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI) and evapotranspiration (ET), and meteorological station precipitation), the irrigation signal (frequency, timing and area) is detected in the southern part of the Hebei Province. The SMAP data was processed by the 5-point moving average method to reduce the error caused by the uncertainty of the microwave data derived SM. Irrigation signals can be detected by removing the precipitation effect and setting the SM change threshold. Based on the validation results, the overall accuracy of the irrigation signal detection is 77.08%. Simultaneously, considering the spatial resolution limitation of SMAP pixels, the SMAP irrigation area was downscaled using the winter wheat area extracted from MODIS NDVI. The analytical results of 55 winter wheat samples (5 samples in a group) showed that winter wheat covered by one SMAP pixel had an 82.72% growth consistency in surface water irrigation period, which can indicate a downscaling effectiveness. According to the above statistical analysis, this paper considers that although the spatial resolution of SMAP data is insufficient, it can reflect the change of SM more sensitively. In areas where the crop pattern is relatively uniform, the introduction of high-resolution crop pattern distribution can be used not only to detect irrigation signals but also to validate the effectiveness of irrigation signal detection by analyzing crop growth consistency. Therefore, the downscaling results can indicate the true winter wheat irrigation timing, area and frequency in the study area.


2021 ◽  
Vol 13 (15) ◽  
pp. 2993
Author(s):  
Ruiyang Yu ◽  
Yunjun Yao ◽  
Qiao Wang ◽  
Huawei Wan ◽  
Zijing Xie ◽  
...  

The long-term estimation of grassland aboveground biomass (AGB) is important for grassland resource management in the Three-River Headwaters Region (TRHR) of China. Due to the lack of reliable grassland AGB datasets since the 1980s, the long-term spatiotemporal variation in grassland AGB in the TRHR remains unclear. In this study, we estimated AGB in the grassland of 209,897 km2 using advanced very high resolution radiometer (AVHRR), MODerate-resolution Imaging Spectroradiometer (MODIS), meteorological, ancillary data during 1982–2018, and 75 AGB ground observations in the growth period of 2009 in the TRHR. To enhance the spatial representativeness of ground observations, we firstly upscaled the grassland AGB using a gradient boosting regression tree (GBRT) model from ground observations to a 1 km spatial resolution via MODIS normalized difference vegetation index (NDVI), meteorological and ancillary data, and the model produced validation results with a coefficient of determination (R2) equal to 0.76, a relative mean square error (RMSE) equal to 88.8 g C m−2, and a bias equal to −1.6 g C m−2 between the ground-observed and MODIS-derived upscaled AGB. Then, we upscaled grassland AGB using the same model from a 1 km to 5 km spatial resolution via AVHRR NDVI and the same data as previously mentioned with the validation accuracy (R2 = 0.74, RMSE = 57.8 g C m−2, and bias = −0.1 g C m−2) between the MODIS-derived reference and AVHRR-derived upscaled AGB. The annual trend of grassland AGB in the TRHR increased by 0.37 g C m−2 (p < 0.05) on average per year during 1982–2018, which was mainly caused by vegetation greening and increased precipitation. This study provided reliable long-term (1982–2018) grassland AGB datasets to monitor the spatiotemporal variation in grassland AGB in the TRHR.


Agronomy ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 327 ◽  
Author(s):  
Remy Fieuzal ◽  
Vincent Bustillo ◽  
David Collado ◽  
Gerard Dedieu

The objective of this study is to address the capabilities of multi-temporal optical images to estimate the fine-scale yield variability of wheat, over a study site located in southwestern France. The methodology is based on the Landsat-8 and Sentinel-2 satellite images acquired after the sowing and before the harvest of the crop throughout four successive agricultural seasons, the reflectance constituting the input variables of a statistical algorithm (random forest). The best performances are obtained when the Normalized Difference Vegetation Index (NDVI) is combined with the yield maps collected during the crop rotation, the agricultural season 2014 showing the lower level of performances with a coefficient of determination (R2) of 0.44 and a root mean square error (RMSE) of 8.13 quintals by hectare (q.h−1) (corresponding to a relative error of 12.9%), the three other years being associated with values of R2 close or upper to 0.60 and RMSE lower than 7 q.h−1 (corresponding to a relative error inferior to 11.3%). Moreover, the proposed approach allows estimating the crop yield throughout the agricultural season, by using the successive images acquired from the sowing to the harvest. In such cases, early and accurate yield estimates are obtained three months before the end of the crop cycle. At this phenological stage, only a slight decrease in performance is observed compared to the statistic obtained just before the harvest.


2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Donglian Sun ◽  
Yu Li ◽  
Xiwu Zhan ◽  
Chaowei Yang ◽  
Ruixin Yang

<strong>In this study, optical and microwave satellite observations are integrated to estimate soil moisture at high spatial resolution and applied for drought analysis in the continental United States.  To estimate soil moisture, a new refined model is proposed to estimate soil moisture (SM) with auxiliary data like soil texture, topography, surface types, accumulated precipitation, in addition to Normalized Difference Vegetation Index and Land Surface Temperature (LST) used in the traditional universal triangle method. It is found the new proposed SM model using accumulated precipitation demonstrated close agreements with the </strong><strong>U.S. Drought Monitor (USDM) spatial patterns.  Currently, the USDM is providing a weekly map.  Recently, “flash” drought concept appears. To obtain drought map on daily basis, LST is derived from microwave observations and downscaled to the same resolution as the thermal infrared LST product and used to fill the gaps due to clouds in optical LST data. With the integrated daily LST available under nearly all weather conditions, daily soil moisture can be estimated at relatively high spatial resolution, thus drought maps based on soil moisture anomalies can be obtained at high spatial resolution on daily basis and made the flash drought analysis and monitoring become possible.</strong>


2019 ◽  
Vol 11 (14) ◽  
pp. 1656 ◽  
Author(s):  
Manuela Balzarolo ◽  
Josep Peñuelas ◽  
Frank Veroustraete

The objective of this paper was to evaluate the use of in situ normalized difference vegetation index (NDVIis) and Moderate Resolution Imaging Spectroradiometer NDVI (NDVIMD) time series data as proxies for ecosystem gross primary productivity (GPP) to improve GPP upscaling. We used GPP flux data from 21 global FLUXNET sites across main global biomes (forest, grassland, and cropland) and derived MODIS NDVI at contrasting spatial resolutions (between 0.5 × 0.5 km and 3.5 × 3.5 km) centered at flux tower location. The goodness of the relationship between NDVIis and NDVIMD varied across biomes, sites, and MODIS spatial resolutions. We found a strong relationship with a low variability across sites and within year variability in deciduous broadleaf forests and a poor correlation in evergreen forests. Best performances were obtained for the highest spatial resolution at 0.5 × 0.5 km). Both NDVIis and NDVIMD elicited roughly three weeks later the starting of the growing season compared to GPP data. Our results confirm that to improve the accuracy of upscaling in situ data of site GPP seasonal responses, in situ radiation measurement biomes should use larger field of view to sense an area, or more sensors should be placed in the flux footprint area to allow optimal match with satellite sensor pixel size.


Sign in / Sign up

Export Citation Format

Share Document