scholarly journals Development of Geo-KOMPSAT-2A Algorithm for Sea-Ice Detection Using Himawari-8/AHI Data

2020 ◽  
Vol 12 (14) ◽  
pp. 2262
Author(s):  
Donghyun Jin ◽  
Sung-Rae Chung ◽  
Kyeong-Sang Lee ◽  
Minji Seo ◽  
Sungwon Choi ◽  
...  

Sea ice is an important meteorological factor affecting the global climate system, but it is difficult to observe in sea ice ground truth data because of its location mainly at high latitudes and in polar regions. Accordingly, sea-ice detection research has been actively conducted using satellites, since the 1970s. Polar-orbiting and geostationary satellites are used for this purpose; notably, geostationary satellites are capable of real-time monitoring of specific regions. In this paper, we introduce the Geo-KOMPSAT-2A (GK-2A)/Advanced Meteorological Imager (AMI) sea-ice detection algorithm using Japan Meteorological Agency (JMA) Himawari-8/Advanced Himawari Imager (AHI) data as proxy data. The GK-2A/AMI, which is Korea Meteorological Administration (KMA)’s next-generation geostationary satellite launched in December 2018 and Himawari-8/AHI have optically similar channel data, and the observation area includes East Asia and the Western Pacific. The GK-2A/AMI sea-ice detection algorithm produces sea-ice data with a 10-min temporal resolution, a 2-km spatial resolution and sets the Okhotsk Sea and Bohai Sea, where the sea ice is distributed during the winter in the northern hemisphere. It used National Meteorological Satellite Center (NMSC) cloud mask as the preceding data and a dynamic threshold method instead of the static threshold method that is commonly performed in existing sea-ice detection studies. The dynamic threshold methods for sea-ice detection are dynamic wavelength warping (DWW) and IST0 method. The DWW is a method for determining the similarity by comparing the pattern of reflectance change according to the wavelength of two satellite data. The IST0 method detects sea ice by using the correlation between 11.2-μm brightness temperature (BT11.2) and brightness temperature difference (BTD) [BT11.2–BT12.3] according to ice surface temperature (IST). In addition, the GK-2A/AMI sea-ice detection algorithm reclassified the cloud area into sea ice using a simple test. A comparison of the sea-ice data derived the GK-2A/AMI sea-ice detection algorithm with the S-NPP/visible infrared imaging radiometer suite (VIIRS) sea ice characterization product indicates consistency of 99.0% and inconsistency of 0.9%. The overall accuracy (OA) of GK-2A/AMI sea-ice data with the sea ice region of interest (ROI) data, which is constructed by photo-interpretation method from RGB images, is 97.2%.

2021 ◽  
Vol 15 (6) ◽  
pp. 2803-2818
Author(s):  
Joan Antoni Parera-Portell ◽  
Raquel Ubach ◽  
Charles Gignac

Abstract. The continued loss of sea ice in the Northern Hemisphere due to global warming poses a threat to biota and human activities, evidencing the necessity of efficient sea ice monitoring tools. Aiming at the creation of an improved sea ice extent indicator covering the European regional seas, the new IceMap500 algorithm has been developed to classify sea ice and water at a resolution of 500 m at nadir. IceMap500 features a classification strategy built upon previous MODIS sea ice extent algorithms and a new method to reclassify areas affected by resolution-breaking features inherited from the MODIS cloud mask. This approach results in an enlargement of mapped area, a reduction of potential error sources and a better delineation of the sea ice edge, while still systematically achieving accuracies above 90 %, as obtained by manual validation. Swath maps have been aggregated at a monthly scale to obtain sea ice extent with a method that is sensitive to spatio-temporal variations in the sea ice cover and that can be used as an additional error filter. The resulting dataset, covering the months of maximum and minimum sea ice extent (i.e. March and September) over 2 decades (from 2000 to 2019), demonstrates the algorithm's applicability as a monitoring tool and as an indicator, illustrating the sea ice decline at a regional scale. The European sea regions located in the Arctic, NE Atlantic and Barents seas display clear negative trends in both March (−27.98 ± 6.01 × 103 km2yr−1) and September (−16.47 ± 5.66 × 103 km2yr−1). Such trends indicate that the sea ice cover is shrinking at a rate of ∼ 9 % and ∼ 13 % per decade, respectively, even though the sea ice extent loss is comparatively ∼ 70 % greater in March.


2021 ◽  
Author(s):  
Joan A. Parera-Portell ◽  
Raquel Ubach ◽  
Charles Gignac

Abstract. The continued loss of sea ice in the Northern Hemisphere due to global warming poses a threat on biota and human activities, evidencing the necessity of efficient sea ice monitoring tools. Aiming at the creation of an improved European sea ice extent indicator, the IceMap250 algorithm has been reworked to generate improved sea ice extent maps at 500 m resolution at nadir. Changes in the classification approach and a new method to correct artefacts arising from the MODIS cloud mask allow the enlargement of the mapped area, the reduction of potential error sources and a qualitative improvement of the resulting maps, while systematically achieving accuracies above 90 %. Monthly sea ice extent maps have been derived using a new synthesis method which acts as an additional error filter. Our results, covering the months of maximum (March) and minimum (September) sea ice extent during two decades (from 2000 to 2019), are a proof of the algorithm's applicability as an indicator, illustrating the sea ice decline in the European regional seas. We observed no significant trends in the Baltic (−2.75 ± 2.05 × 103 km2 yr−1) although, on the contrary, the European Arctic seas display clear negative trends both in March (−27.98 ± 6.01 × 103 km2 yr−1) and September (−16.47 ± 5.66 × 103 km2 yr−1). Such trends indicate that the sea ice cover in March and September is shrinking at a rate of ∼9 % and ∼13 % per decade, respectively, even though the sea ice extent loss is comparatively ∼70 % greater in March. Therefore, according to the trends and without taking into account the variability of the sea ice cover, the loss of sea ice extent over two decades in the study area would be comparable to the area of continental France in the case of the March maximum, and to that of Finland in the case of the September minimum.


2018 ◽  
Vol 6 (2) ◽  
pp. 64 ◽  
Author(s):  
Peter Dorofy ◽  
Rouzbeh Nazari ◽  
Peter Romanov

2021 ◽  
Vol 2 (1) ◽  
pp. 1-25
Author(s):  
Srinivasan Iyengar ◽  
Stephen Lee ◽  
David Irwin ◽  
Prashant Shenoy ◽  
Benjamin Weil

Buildings consume over 40% of the total energy in modern societies, and improving their energy efficiency can significantly reduce our energy footprint. In this article, we present WattScale, a data-driven approach to identify the least energy-efficient buildings from a large population of buildings in a city or a region. Unlike previous methods such as least-squares that use point estimates, WattScale uses Bayesian inference to capture the stochasticity in the daily energy usage by estimating the distribution of parameters that affect a building. Further, it compares them with similar homes in a given population. WattScale also incorporates a fault detection algorithm to identify the underlying causes of energy inefficiency. We validate our approach using ground truth data from different geographical locations, which showcases its applicability in various settings. WattScale has two execution modes—(i) individual and (ii) region-based, which we highlight using two case studies. For the individual execution mode, we present results from a city containing >10,000 buildings and show that more than half of the buildings are inefficient in one way or another indicating a significant potential from energy improvement measures. Additionally, we provide probable cause of inefficiency and find that 41%, 23.73%, and 0.51% homes have poor building envelope, heating, and cooling system faults, respectively. For the region-based execution mode, we show that WattScale can be extended to millions of homes in the U.S. due to the recent availability of representative energy datasets.


1987 ◽  
Vol 77 (4) ◽  
pp. 1437-1445
Author(s):  
M. Baer ◽  
U. Kradolfer

Abstract An automatic detection algorithm has been developed which is capable of time P-phase arrivals of both local and teleseismic earthquakes, but rejects noise bursts and transient events. For each signal trace, the envelope function is calculated and passed through a nonlinear amplifier. The resulting signal is then subjected to a statistical analysis to yield arrival time, first motion, and a measure of reliability to be placed on the P-arrival pick. An incorporated dynamic threshold lets the algorithm become very sensitive; thus, even weak signals are timed precisely. During an extended performance evaluation on a data set comprising 789 P phases of local events and 1857 P phases of teleseismic events picked by an analyst, the automatic picker selected 66 per cent of the local phases and 90 per cent of the teleseismic phases. The accuracy of the automatic picks was “ideal” (i.e., could not be improved by the analyst) for 60 per cent of the local events and 63 per cent of the teleseismic events.


2016 ◽  
Vol 55 (2) ◽  
pp. 479-491 ◽  
Author(s):  
Sarah M. Griffin ◽  
Kristopher M. Bedka ◽  
Christopher S. Velden

AbstractAssigning accurate heights to convective cloud tops that penetrate into the upper troposphere–lower stratosphere (UTLS) region using infrared (IR) satellite imagery has been an unresolved issue for the satellite research community. The height assignment for the tops of optically thick clouds is typically accomplished by matching the observed IR brightness temperature (BT) with a collocated rawinsonde or numerical weather prediction (NWP) profile. However, “overshooting tops” (OTs) are typically colder (in BT) than any vertical level in the associated profile, leaving the height of these tops undetermined using this standard approach. A new method is described here for calculating the heights of convectively driven OTs using the characteristic temperature lapse rate of the cloud top as it ascends into the UTLS region. Using 108 MODIS-identified OT events that are directly observed by the CloudSat Cloud Profiling Radar (CPR), the MODIS-derived brightness temperature difference (BTD) between the OT and anvil regions can be defined. This BTD is combined with the CPR- and NWP-derived height difference between these two regions to determine the mean lapse rate, −7.34 K km−1, for the 108 events. The anvil height is typically well known, and an automated OT detection algorithm is used to derive BTD, so the lapse rate allows a height to be calculated for any detected OT. An empirical fit between MODIS and geostationary imager IR BT for OTs and anvil regions was performed to enable application of this method to coarser-spatial-resolution geostationary data. Validation indicates that ~75% (65%) of MODIS (geostationary) OT heights are within ±500 m of the coincident CPR-estimated heights.


2019 ◽  
Author(s):  
Maciej Miernecki ◽  
Lars Kaleschke ◽  
Nina Maaß ◽  
Stefan Hendricks ◽  
Sten Schmidl Søbjrg

Abstract. Sea ice thickness measurements with L-band radiometry is a technique which allows daily, weather-independent monitoring of the polar sea ice cover. The sea-ice thickness retrieval algorithms relay on the sensitivity of the L-band brightness temperature to sea-ice thickness. In this work, we investigate the decimetre-scale surface roughness as a factor influencing the L-band emissions from sea ice. We used an airborne laser scanner to construct a digital elevation model of the sea ice surface. We found that the probability density function of surface slopes is exponential for a range of degrees of roughness. Then we applied the geometrical optics, bounded with the MIcrowave L-band LAyered Sea ice emission model in the Monte Carlo simulation to simulate the effects of surface roughness. According to this simulations, the most affected by surface roughness is the vertical polarization around Brewster's angle, where the decrease in brightness temperature can reach 8 K. The vertical polarization for the same configuration exhibits a 4 K increase. The near-nadir angles are little affected, up to 2.6 K decrease for the most deformed ice. Overall the effects of large-scale surface roughness can be expressed as a superposition of two factors: the change in intensity and the polarization mixing. The first factor depends on surface permittivity, second shows little dependence on it. Comparison of the brightness temperature simulations with the radiometer data does not yield definite results.


Author(s):  
Guoqing Zhou ◽  
Xiang Zhou ◽  
Tao Yue ◽  
Yilong Liu

This paper presents a method which combines the traditional threshold method and SVM method, to detect the cloud of Landsat-8 images. The proposed method is implemented using DSP for real-time cloud detection. The DSP platform connects with emulator and personal computer. The threshold method is firstly utilized to obtain a coarse cloud detection result, and then the SVM classifier is used to obtain high accuracy of cloud detection. More than 200 cloudy images from Lansat-8 were experimented to test the proposed method. Comparing the proposed method with SVM method, it is demonstrated that the cloud detection accuracy of each image using the proposed algorithm is higher than those of SVM algorithm. The results of the experiment demonstrate that the implementation of the proposed method on DSP can effectively realize the real-time cloud detection accurately.


Sign in / Sign up

Export Citation Format

Share Document