scholarly journals Automation of Pan-Sharpening Methods for Pléiades Images Using GIS Basic Functions

2021 ◽  
Vol 13 (8) ◽  
pp. 1550
Author(s):  
Emanuele Alcaras ◽  
Claudio Parente ◽  
Andrea Vallario

Pan-sharpening methods allow the transfer of higher resolution panchromatic images to multispectral ones concerning the same scene. Different approaches are available in the literature, and only a part of these approaches is included in remote sensing software for automatic application. In addition, the quality of the results supplied by a specific method varies according to the characteristics of the scene; for consequence, different algorithms must be compared to find the best performing one. Nevertheless, pan-sharpening methods can be applied using GIS basic functions in the absence of specific pan-sharpening tools, but this operation is expensive and time-consuming. This paper aims to explain the approach implemented in Quantum GIS (QGIS) for automatic pan-sharpening of Pléiades images. The experiments are carried out on data concerning the Greek island named Lesbo. In total, 14 different pan-sharpening methods are applied to reduce pixel dimensions of the four multispectral bands from 2 m to 0.5 m. The automatic procedure involves basic functions already included in GIS software; it also permits the evaluation of the quality of the resulting images supplying the values of appropriate indices. The results demonstrate that the approach provides the user with the highest performing method every time, so the best possible fused products are obtained with minimal effort in a reduced timeframe.

2021 ◽  
Vol 13 (5) ◽  
pp. 860
Author(s):  
Yi-Chun Lin ◽  
Tian Zhou ◽  
Taojun Wang ◽  
Melba Crawford ◽  
Ayman Habib

Remote sensing platforms have become an effective data acquisition tool for digital agriculture. Imaging sensors onboard unmanned aerial vehicles (UAVs) and tractors are providing unprecedented high-geometric-resolution data for several crop phenotyping activities (e.g., canopy cover estimation, plant localization, and flowering date identification). Among potential products, orthophotos play an important role in agricultural management. Traditional orthophoto generation strategies suffer from several artifacts (e.g., double mapping, excessive pixilation, and seamline distortions). The above problems are more pronounced when dealing with mid- to late-season imagery, which is often used for establishing flowering date (e.g., tassel and panicle detection for maize and sorghum crops, respectively). In response to these challenges, this paper introduces new strategies for generating orthophotos that are conducive to the straightforward detection of tassels and panicles. The orthophoto generation strategies are valid for both frame and push-broom imaging systems. The target function of these strategies is striking a balance between the improved visual appearance of tassels/panicles and their geolocation accuracy. The new strategies are based on generating a smooth digital surface model (DSM) that maintains the geolocation quality along the plant rows while reducing double mapping and pixilation artifacts. Moreover, seamline control strategies are applied to avoid having seamline distortions at locations where the tassels and panicles are expected. The quality of generated orthophotos is evaluated through visual inspection as well as quantitative assessment of the degree of similarity between the generated orthophotos and original images. Several experimental results from both UAV and ground platforms show that the proposed strategies do improve the visual quality of derived orthophotos while maintaining the geolocation accuracy at tassel/panicle locations.


Author(s):  
Andreas Christian Braun

Land-use and land-cover analyses based on satellite image classification are used in most, if not all, sub-disciplines of physical geography. Data availability and increasingly simple image classification techniques – nowadays, even implemented in simple geographic information systems – increase the use of such analyses. To assess the quality of such land-use analyses, accuracy metrics are applied. The results are considered to have sufficient quality, exceeding thresholds published in the literature. A typical practice in many studies is to confuse accuracy in remote sensing with quality, as required by physical geography. However, notions such as quality are subject to normative considerations and performative practices, which differ between scientific domains. Recent calls for critical physical geography have stressed that scientific results cannot be understood separately from the values and practices underlying them. This article critically discusses the specific understanding of quality in remote sensing, outlining norms and practices shaping it and their relation to physical geography. It points out that, as a seeming paradox, results considered more accurate in remote sensing terms can be less informative – or meaningful – in geographical terms. Finally, a roadmap of how to apply remote sensing land-use analyses more constructively in physical geography is proposed.


2021 ◽  
Vol 13 (7) ◽  
pp. 1295
Author(s):  
Massimo Selva

The need to observe and characterize the environment leads to a constant increase of the spatial, spectral, and radiometric resolution of new optical sensors [...]


2014 ◽  
Vol 62 ◽  
pp. 216-226 ◽  
Author(s):  
Peter Bunting ◽  
Daniel Clewley ◽  
Richard M. Lucas ◽  
Sam Gillingham

2021 ◽  
pp. 1-14
Author(s):  
Zhenggang Wang ◽  
Jin Jin

Remote sensing image segmentation provides technical support for decision making in many areas of environmental resource management. But, the quality of the remote sensing images obtained from different channels can vary considerably, and manually labeling a mass amount of image data is too expensive and Inefficiently. In this paper, we propose a point density force field clustering (PDFC) process. According to the spectral information from different ground objects, remote sensing superpixel points are divided into core and edge data points. The differences in the densities of core data points are used to form the local peak. The center of the initial cluster can be determined by the weighted density and position of the local peak. An iterative nebular clustering process is used to obtain the result, and a proposed new objective function is used to optimize the model parameters automatically to obtain the global optimal clustering solution. The proposed algorithm can cluster the area of different ground objects in remote sensing images automatically, and these categories are then labeled by humans simply.


2021 ◽  
Vol 314 ◽  
pp. 05002
Author(s):  
Hasna Moumni ◽  
Karima Sebari ◽  
Laila Stour ◽  
Abdellatif Ahbari

The availability, accessibility and quality of data are significant obstacles to hydrological modelling. Estimating the initial values of the hydrological model´’ ’s parameters is a laborious and determining task requiring much attention. Geographic information systems (GIS) and spatial remote sensing are prometting tools for processing and collecting data. In this work, we use an innovative approach to estimate the HEC-HMS hydrological model parameters from the soil map of Africa (250m), the land use map GLC30, the depth to bedrock map, the digital elevation model and observed flow data. The estimation approach is applied to the Ouergha basin (Sebou, Morocco). The proposed approach’s interest is to feed the HEC-HMS hydrological model with initial values of parameters close to the study area reality instead of using random parameters.


2014 ◽  
Vol 899 ◽  
pp. 30-35 ◽  
Author(s):  
Ferenc Kalmár

Energy labeling of buildings is accepted and used in all European countries. Depending on the yearly specific primary energy consumption the energy quality of a building is expressed using a country specific method. Consequently primary energy is the basis of building energy class. Primary energy is obtained using different country specific transformation factors for gas, electricity, wood, biomass etc. However different quantities of warm water and steam can have the same energy content. Calculating the exergy content of used energy a better classification of buildings can be achieved. This paper presents a method to analyze residential buildings from exergy point of view. It was found a transformation factor between energy and exergy: 0.075.


Author(s):  
Afreen Siddiqi ◽  
Sheila Baber ◽  
Olivier De Weck

Sign in / Sign up

Export Citation Format

Share Document