scholarly journals Spatiotemporal Characteristics of the Water Quality and Its Multiscale Relationship with Land Use in the Yangtze River Basin

2021 ◽  
Vol 13 (16) ◽  
pp. 3309
Author(s):  
Jian Wu ◽  
Sidong Zeng ◽  
Linhan Yang ◽  
Yuanxin Ren ◽  
Jun Xia

The spatiotemporal characteristics of river water quality are the key indicators for ecosystem health evaluation in basins. Land use patterns, as one of the main driving forces of water quality change, affect stream water quality differently with the variations in the spatiotemporal scales. Thus, quantitative analysis of the relationship between different land cover types and river water quality contributes to a better understanding of the effects of land cover on water quality, the landscape planning of water quality protection, and integrated water resources management. Based on water quality data of 2006–2018 at 18 typical water quality stations in the Yangtze River basin, this study analyzed the spatial and temporal variation characteristics of water quality by using the single-factor water quality identification index through statistical analysis. Furthermore, the Spearman correlation analysis method was adopted to quantify the spatial-scale and temporal-scale effects of various land uses, including agricultural land (AL), forest land (FL), grassland (GL), water area (WA), and construction land (CL), on the stream water quality of dissolved oxygen (DO), chemical oxygen demand (CODMn), and ammonia (NH3-N). The results showed that (1) in terms of temporal variation, the water quality of the river has improved significantly and the tributaries have improved more than the main rivers; (2) in the spatial variation respect, the water quality pollutants in the tributaries are significantly higher than those in the main stream, and the concentration of pollutants increases with the decrease of the distance from the estuary; and (3) the correlation between DO and land use is low, while that between NH3-N, CODMn, and land use is high. CL and AL have a negative effect on water quality, while FL and GL have a purifying effect on water quality. In particular, AL and CL have a significant positive correlation with pollutants in water. Compared with NH3-N, CODMn has a higher correlation with land use at a larger scale. The results highlight the spatial scale and seasonal dependence of land use on water quality, which can provide a scientific basis for land management and seasonal pollution control.

2021 ◽  
Vol 109 ◽  
pp. 105679
Author(s):  
António Carlos Pinheiro Fernandes ◽  
Lisa Maria de Oliveira Martins ◽  
Fernando António Leal Pacheco ◽  
Luís Filipe Sanches Fernandes

2008 ◽  
Vol 186 (1) ◽  
pp. 32-42 ◽  
Author(s):  
Jijun Xu ◽  
Dawen Yang ◽  
Yonghong Yi ◽  
Zhidong Lei ◽  
Jin Chen ◽  
...  

Author(s):  
Rui Han ◽  
Luo Guo ◽  
NuanYin Xu ◽  
Dan Wang

The Eastern Sichuan Region (ESR) is one of the key pilot regions for Grain for Green Program (GGP) implementation in the upper reaches of the Yangtze River basin in China. Therefore, monitoring the effect of the GGP on the ecosystem in the ESR is important. In this study, the Mann–Kendall Trend Test Model was used to ascertain the changes in vegetation coverage. The transfer matrix was used to explore the changes in Land Use/Land Cover (LULC). LULC change direction model (LCDM) was used to preliminarily assess the impact of LULC changes on the ecosystem. The Pressure–State–Response model (PSR), reflecting the human pressure and the ecosystem state, was applied to analyze the spatial–temporal characteristics of the ecosystem health index (EHI). The time span of this study was from 1990 to 2015. The results show that the vegetation coverage changed significantly (p < 0.05), and ecosystem function developed towards positive because of the increase in the coverage of forestland and water land and decrease in the coverage of farmland. The spatial distribution of the EHI was influenced by the pattern of land use. The eastern region, associated with a large area of forestland and grassland, has a low population density and a low degree of land use exploitation, resulting in a high EHI value. The situation was completely opposite in the western region. Regarding the temporal scale, in spite of the decreasing pressure indicator, most counties had experienced an increase in the EHI. There was a clear correlation between the increased EHI values and the restored areas at the third stage (2000–2005) (p < 0.05, r2 = 0.164), but this correlation disappeared at the latter stage (2005–2015) (p > 0.05). The changes showed significant variations in time and area because of differences in the process and the intensity of the implication of the GGP.


Sign in / Sign up

Export Citation Format

Share Document