scholarly journals In Situ Determination of Dry and Wet Snow Permittivity: Improving Equations for Low Frequency Radar Applications

2021 ◽  
Vol 13 (22) ◽  
pp. 4617
Author(s):  
Ryan W. Webb ◽  
Adrian Marziliano ◽  
Daniel McGrath ◽  
Randall Bonnell ◽  
Tate G. Meehan ◽  
...  

Extensive efforts have been made to observe the accumulation and melting of seasonal snow. However, making accurate observations of snow water equivalent (SWE) at global scales is challenging. Active radar systems show promise, provided the dielectric properties of the snowpack are accurately constrained. The dielectric constant (k) determines the velocity of a radar wave through snow, which is a critical component of time-of-flight radar techniques such as ground penetrating radar and interferometric synthetic aperture radar (InSAR). However, equations used to estimate k have been validated only for specific conditions with limited in situ validation for seasonal snow applications. The goal of this work was to further understand the dielectric permittivity of seasonal snow under both dry and wet conditions. We utilized extensive direct field observations of k, along with corresponding snow density and liquid water content (LWC) measurements. Data were collected in the Jemez Mountains, NM; Sandia Mountains, NM; Grand Mesa, CO; and Cameron Pass, CO from February 2020 to May 2021. We present empirical relationships based on 146 snow pits for dry snow conditions and 92 independent LWC observations in naturally melting snowpacks. Regression results had r2 values of 0.57 and 0.37 for dry and wet snow conditions, respectively. Our results in dry snow showed large differences between our in situ observations and commonly applied equations. We attribute these differences to assumptions in the shape of the snow grains that may not hold true for seasonal snow applications. Different assumptions, and thus different equations, may be necessary for varying snowpack conditions in different climates, suggesting that further testing is necessary. When considering wet snow, large differences were found between commonly applied equations and our in situ measurements. Many previous equations assume a background (dry snow) k that we found to be inaccurate, as previously stated, and is the primary driver of resulting uncertainty. Our results suggest large errors in SWE (10–15%) or LWC (0.05–0.07 volumetric LWC) estimates based on current equations. The work presented here could prove useful for making accurate observations of changes in SWE using future InSAR opportunities such as NISAR and ROSE-L.

Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 890
Author(s):  
Mohamed Wassim Baba ◽  
Abdelghani Boudhar ◽  
Simon Gascoin ◽  
Lahoucine Hanich ◽  
Ahmed Marchane ◽  
...  

Melt water runoff from seasonal snow in the High Atlas range is an essential water resource in Morocco. However, there are only few meteorological stations in the high elevation areas and therefore it is challenging to estimate the distribution of snow water equivalent (SWE) based only on in situ measurements. In this work we assessed the performance of ERA5 and MERRA-2 climate reanalysis to compute the spatial distribution of SWE in the High Atlas. We forced a distributed snowpack evolution model (SnowModel) with downscaled ERA5 and MERRA-2 data at 200 m spatial resolution. The model was run over the period 1981 to 2019 (37 water years). Model outputs were assessed using observations of river discharge, snow height and MODIS snow-covered area. The results show a good performance for both MERRA-2 and ERA5 in terms of reproducing the snowpack state for the majority of water years, with a lower bias using ERA5 forcing.


2019 ◽  
Vol 55 (5) ◽  
pp. 4465-4487 ◽  
Author(s):  
Franziska Koch ◽  
Patrick Henkel ◽  
Florian Appel ◽  
Lino Schmid ◽  
Heike Bach ◽  
...  

2020 ◽  
Author(s):  
Gabriele Schwaizer ◽  
Lars Keuris ◽  
Thomas Nagler ◽  
Chris Derksen ◽  
Kari Luojus ◽  
...  

<p>Seasonal snow is an important component of the global climate system. It is highly variable in space and time and sensitive to short term synoptic scale processes and long term climate-induced changes of temperature and precipitation. Current snow products derived from various satellite data applying different algorithms show significant discrepancies in extent and snow mass, a potential source for biases in climate monitoring and modelling. The recently launched ESA CCI+ Programme addresses seasonal snow as one of 9 Essential Climate Variables to be derived from satellite data.</p><p>In the snow_cci project, scheduled for 2018 to 2021 in its first phase, reliable fully validated processing lines are developed and implemented. These tools are used to generate homogeneous multi-sensor time series for the main parameters of global snow cover focusing on snow extent and snow water equivalent. Using GCOS guidelines, the requirements for these parameters are assessed and consolidated using the outcome of workshops and questionnaires addressing users dealing with different climate applications. Snow extent product generation applies algorithms accounting for fractional snow extent and cloud screening in order to generate consistent daily products for snow on the surface (viewable snow) and snow on the surface corrected for forest masking (snow on ground) with global coverage. Input data are medium resolution optical satellite images (AVHRR-2/3, AATSR, MODIS, VIIRS, SLSTR/OLCI) from 1981 to present. An iterative development cycle is applied including homogenisation of the snow extent products from different sensors by minimizing the bias. Independent validation of the snow products is performed for different seasons and climate zones around the globe from 1985 onwards, using as reference high resolution snow maps from Landsat and Sentinel- 2as well as in-situ snow data following standardized validation protocols.</p><p>Global time series of daily snow water equivalent (SWE) products are generated from passive microwave data from SMMR, SSM/I, and AMSR from 1978 onwards, combined with in-situ snow depth measurements. Long-term stability and quality of the product is assessed using independent snow survey data and by intercomparison with the snow information from global land process models.</p><p>The usability of the snow_cci products is ensured through the Climate Research Group, which performs case studies related to long term trends of seasonal snow, performs evaluations of CMIP-6 and other snow-focused climate model experiments, and applies the data for simulation of Arctic hydrological regimes.</p><p>In this presentation, we summarize the requirements and product specifications for the snow extent and SWE products, with a focus on climate applications. We present an overview of the algorithms and systems for generation of the time series. The 40 years (from 1980 onwards) time series of daily fractional snow extent products from AVHRR with 5 km pixel spacing, and the 20-year time series from MODIS (1 km pixel spacing) as well as the coarse resolution (25 km pixel spacing) of daily SWE products from 1978 onwards will be presented along with first results of the multi-sensor consistency checks and validation activities.</p>


2000 ◽  
Vol 31 (2) ◽  
pp. 89-106 ◽  
Author(s):  
A. Lundberg ◽  
H. Thunehed

The snow-water equivalent of late-winter snowpack is of utmost importance for hydropower production in areas where a large proportion of the reservoir water emanates from snowmelt. Impulse radar can be used to estimate the snow-water equivalent of the snowpack and thus the expected snowmelt discharge. Impulse radar is now in operational use in some Scandinavian basins. With radar technology the radar wave propagation time in the snowpack is converted into snow-water equivalent with help of a parameter usually termed the a-value. Use of radar technology during late winter brings about risk for measurements on wet snow. The a-value for dry snow cannot be used directly for wet snow. We have found that a liquid-water content of 5% (by volume) reduces the a-value by approximately 20%. In this paper an equation, based on snow density and snow liquid water content, for calculation of wet-snow a-value is presented.


2012 ◽  
Vol 44 (4) ◽  
pp. 600-613 ◽  
Author(s):  
Nils Sundström ◽  
David Gustafsson ◽  
Andrey Kruglyak ◽  
Angela Lundberg

Estimates of snow water equivalent (SWE) with ground-penetrating radar can be used to calibrate and validate measurements of SWE over large areas conducted from satellites and aircrafts. However, such radar estimates typically suffer from low accuracy in wet snowpacks due to a built-in assumption of dry snow. To remedy the problem, we suggest determining liquid water content from path-dependent attenuation. We present the results of a field evaluation of this method which demonstrate that, in a wet snowpack between 0.9 and 3 m deep and with about 5 vol% of liquid water, liquid water content is underestimated by about 50% (on average). Nevertheless, the method decreases the mean error in SWE estimates to 16% compared to 34% when the presence of liquid water in snow is ignored and 31% when SWE is determined directly from two-way travel time and calibrated for manually measured snow density.


2021 ◽  
Author(s):  
Achille Capelli ◽  
Franziska Koch ◽  
Patrick Henkel ◽  
Markus Lamm ◽  
Florian Appel ◽  
...  

Abstract. Snow water equivalent (SWE) can be measured using low-cost Global Navigation Satellite System (GNSS) sensors with one antenna placed below the snowpack and another one serving as a reference above the snow. The underlying GNSS signal-based algorithm for SWE determination for dry- and wet-snow conditions processes the carrier phases and signal strengths and derives additionally liquid water content (LWC) and snow depth (HS). So far, the algorithm was tested intensively for high-alpine conditions with distinct seasonal accumulation and ablation phases. In general, snow occurrence, snow amount, snow density and LWC can vary considerably with climatic conditions and elevation. Regarding alpine regions, lower elevations mean generally earlier and faster melting, more rain-on-snow events and shallower snowpack. Therefore, we assessed the applicability of the GNSS-based SWE measurement at four stations along a steep elevation gradient (820, 1185, 1510 and 2540 m a.s.l.) in the eastern Swiss Alps during two winter seasons (2018–2020). Reference data of SWE, LWC and HS were collected manually and with additional automated sensors at all locations. The GNSS-derived SWE estimates agreed very well with manual reference measurements along the elevation gradient and the accuracy (RMSE = 34 mm, RMSRE = 11 %) was similar under wet- and dry-snow conditions, although significant differences in snow density and meteorological conditions existed between the locations. The GNSS-derived SWE was more accurate than measured with other automated SWE sensors. However, with the current version of the GNSS algorithm, the determination of daily changes of SWE was found to be less suitable compared to manual measurements or pluviometer recordings and needs further refinement. The values of the GNSS-derived LWC were robust and within the precision of the manual and radar measurements. The additionally derived HS correlated well with the validation data. We conclude that SWE can reliably be determined using low-cost GNSS-sensors under a broad range of climatic conditions and LWC and HS are valuable add-ons.


2017 ◽  
Vol 11 (4) ◽  
pp. 1647-1664 ◽  
Author(s):  
Emmy E. Stigter ◽  
Niko Wanders ◽  
Tuomo M. Saloranta ◽  
Joseph M. Shea ◽  
Marc F. P. Bierkens ◽  
...  

Abstract. Snow is an important component of water storage in the Himalayas. Previous snowmelt studies in the Himalayas have predominantly relied on remotely sensed snow cover. However, snow cover data provide no direct information on the actual amount of water stored in a snowpack, i.e., the snow water equivalent (SWE). Therefore, in this study remotely sensed snow cover was combined with in situ observations and a modified version of the seNorge snow model to estimate (climate sensitivity of) SWE and snowmelt runoff in the Langtang catchment in Nepal. Snow cover data from Landsat 8 and the MOD10A2 snow cover product were validated with in situ snow cover observations provided by surface temperature and snow depth measurements resulting in classification accuracies of 85.7 and 83.1 % respectively. Optimal model parameter values were obtained through data assimilation of MOD10A2 snow maps and snow depth measurements using an ensemble Kalman filter (EnKF). Independent validations of simulated snow depth and snow cover with observations show improvement after data assimilation compared to simulations without data assimilation. The approach of modeling snow depth in a Kalman filter framework allows for data-constrained estimation of snow depth rather than snow cover alone, and this has great potential for future studies in complex terrain, especially in the Himalayas. Climate sensitivity tests with the optimized snow model revealed that snowmelt runoff increases in winter and the early melt season (December to May) and decreases during the late melt season (June to September) as a result of the earlier onset of snowmelt due to increasing temperature. At high elevation a decrease in SWE due to higher air temperature is (partly) compensated by an increase in precipitation, which emphasizes the need for accurate predictions on the changes in the spatial distribution of precipitation along with changes in temperature.


Sign in / Sign up

Export Citation Format

Share Document