scholarly journals Detection and 3D Modeling of Potential Buried Archaeological Structures Using WorldView-3 Satellite Imagery

2021 ◽  
Vol 14 (1) ◽  
pp. 92
Author(s):  
Raghda El-Behaedi

Throughout the world, cultural heritage sites are under the direct threat of damage or destruction due to developing environmental and anthropogenic hazards, such as urban expansion, looting, and rising water levels. Exacerbating this problem is the fact that many of the most vulnerable sites’ exact locations and/or full spatial extents have yet to be uncovered, making any attempts at their protection exceedingly difficult. However, the utilization of earth observation data has recently emerged as an unmatched tool in the exploration and (digital) preservation of endangered archaeological sites. The presented research employs very high-resolution WorldView-3 satellite imagery (~30 cm) for identifying and delineating previously unknown subsurface archaeological structures at the ancient Egyptian site of Hermopolis (el-Ashmunein). A particular emphasis is placed on the application of spectral indices, specifically those looking at vegetation cropmarks and iron oxide levels. Through this analysis, seven promising structures were identified, including three elongated installations, which may have been utilized for storage purposes, and a potential casemate foundation structure. As 2D outlines of structures are often difficult to visualize, the newly identified archaeological features were expanded into a realistic, georeferenced 3D model using the computer programs, SketchUp Pro and Chaos V-Ray. The goal of this 3D model is to ensure that the results derived from this research are more accessible (and tangible) to a wider audience—the scientific community and the public alike. The methodological scheme presented in this article is highly adaptable and with some minor modifications can be replicated for other archaeological sites worldwide.

2021 ◽  
Author(s):  
George Alexandrakis ◽  
Federico Nomi ◽  
Claudia Speciale ◽  
Sandro De Vita ◽  
Mauro Antonio Di Vito

<p>Geological and environmental conditions that influence local topography also affect indirectly the location of human settlement dynamics. Understanding those relationships plays an important role in archaeological research related to the evolution of settlement dynamics. In the lower Tyrrhenian Islands, an important parameter is also the volcanic landscape evolution. This work aims to study the patterns of Neolithic, Cooper and Bronze Age settlements, based on known archaeological sites at the Low Tyrrhenian Islands, and to generate hypotheses about the relations of settlement patterns with the volcanic landscape. To that end, a Web-GIS database was created, which was fed with topographic, geological, geomorphological data and Earth Observation data. Geomorphological analysis, derived from digital elevation models, and earth observation products such as the SENTINEL missions, can provide useful estimations into the processes shaping landscapes and insight into the location and evolution of settlements. The analysis includes a series of different data correlation, from geomorphologic to socioeconomic, integrated by an indicator analysis. A series of thematic maps were developed to interpret why areas were selected to host settlements. Through the use of the database that was developed during the project, a set of indexes have been applied. Those included exposure and vulnerability indices for the inland and coastal areas, but also location and defensibility indices for the archaeological sites. Moreover, baseline maps for future risk estimations through a Multi-Criteria Decision Analysis System (MCDA), have been produced. The Volcanic Islands of the lower Tyrrhenian coast have a volcanic origin and were influenced, and partly still are, by explosive and effusive eruptions of various energy and types, by more or less intense deformational events, often connected with the dynamics of the volcano, and quiescent periods of varying duration. The areas under investigation present different characteristics in their geomorphological but also their societal evolution. Geomorphological data further analyzed in a ternary diagram that indicated the relative influence of each of the parameters in each area. From the diagram, it can be seen that the locations of human activities are strongly affected by past and recent volcanic activity.</p><p>Acknowledgement: This work is part of the Brains2Islands “INDAGINE MULTIDISCIPLINARE NEI CONTESTI INSULARI BASSO TIRRENICI” project Funded by FONDAZIONE CON IL SUD project number 2015-0296</p>


Author(s):  
D. Cerra ◽  
J. Tian ◽  
V. Lysandrou ◽  
S. Plank

The intentional damages to local Cultural Heritage sites carried out in recent months by the Islamic State (IS) have received wide coverage from the media worldwide. Earth Observation data is an important tool to assess these damages in such non-accessible areas: If a fast response is desired, automated image processing techniques would be needed to speed up the analysis. This paper shows the first results of applying fast and robust change detection techniques to sensitive areas. A map highlighting potentially damaged buildings is derived, which could help experts at timely assessing the damages to the Cultural Heritage sites in the observed images.


Author(s):  
Qiang-qiang Li ◽  
Xiang-xin Li ◽  
Yong-huan Ma ◽  
Lin-lin Lu ◽  
Xin-yuan Wang ◽  
...  

2021 ◽  
Vol 13 (9) ◽  
pp. 1744
Author(s):  
Ellen Banzhaf ◽  
Wanben Wu ◽  
Xiangyu Luo ◽  
Julius Knopp

Urbanisation processes inherently influence land cover (LC) and have dramatic impacts on the amount, distribution and quality of vegetation cover. The latter are the source of ecosystem services (ES) on which humans depend. However, the temporal and thematical dimensions are not documented in a comparable manner across Europe and China. Three cities in China and three cities in Europe were selected as case study areas to gain a picture of spatial urban dynamics at intercontinental scale. First, we analysed available global and continental thematic LC products as a data pool for sample selection and referencing our own mapping model. With the help of the Google Earth Engine (GEE) platform and earth observation data, an automatic LC mapping method tailored for more detailed ES features was proposed. To do so, differentiated LC categories were quantified. In order to obtain a balance between efficiency and high classification accuracy, we developed an optimal classification model by evaluating the importance of a large number of spectral, texture-based indices and topographical information. The overall classification accuracies range between 73% and 95% for different time slots and cities. To capture ES related LC categories in great detail, deciduous and coniferous forests, cropland, grassland and bare land were effectively identified. To understand inner urban options for potential new ES, dense and dispersed built-up areas were differentiated with good results. In addition, this study focuses on the differences in the characteristics of urban expansion witnessed in China and Europe. Our results reveal that urbanisation has been more intense in the three Chinese cities than in the three European cities, with an 84% increase in the entire built-up area over the last two decades. However, our results also show the results of China’s ecological restoration policies, with a total of 963 km2 of new green and blue LC created in the last two decades. We proved that our automatic mapping can be effectively applied to future studies, and the monitoring results will be useful for consecutive ES analyses aimed at achieving more environmentally friendly cities.


Author(s):  
D. Cerra ◽  
J. Tian ◽  
V. Lysandrou ◽  
S. Plank

The intentional damages to local Cultural Heritage sites carried out in recent months by the Islamic State (IS) have received wide coverage from the media worldwide. Earth Observation data is an important tool to assess these damages in such non-accessible areas: If a fast response is desired, automated image processing techniques would be needed to speed up the analysis. This paper shows the first results of applying fast and robust change detection techniques to sensitive areas. A map highlighting potentially damaged buildings is derived, which could help experts at timely assessing the damages to the Cultural Heritage sites in the observed images.


Author(s):  
Daniele Cerra ◽  
Simon Plank ◽  
Vasiliki Lysandrou ◽  
Jiaojiao Tian

The intentional damages to local Cultural Heritage sites carried out in recent months by the Islamic State have received wide coverage from the media worldwide. Earth Observation data provide important information to assess these damages in such non-accessible areas, and automated image processing techniques would be needed to speed up the analysis if a fast response is desired. This paper shows the first results of applying fast and robust change detection techniques to sensitive areas, based on the extraction of textural information and robust differences of brightness values related to pre- and post-disaster satellite images. A map highlighting potentially damaged buildings is derived, which could help experts at timely assessing the damages to the Cultural Heritage sites of interest. Encouraging results are obtained for two archaeological sites in Syria and Iraq.


Water ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 2597
Author(s):  
Giacomo Deiana ◽  
Fabrizio Antonioli ◽  
Lorenzo Moretti ◽  
Paolo Emanuele Orrù ◽  
Giovanni Randazzo ◽  
...  

Areas of the Mediterranean Sea are dynamic habitats in which human activities have been conducted for centuries and which feature micro-tidal environments with about 0.40 m of range. For this reason, human settlements are still concentrated along a narrow coastline strip, where any change in the sea level and coastal dynamics may impact anthropic activities. We analyzed light detection and ranging (LiDAR) and Copernicus Earth observation data. The aim of this research is to provide estimates and detailed maps (in three coastal plain of Sardinia (Italy) and in the Pontina Plain (southern Latium, Italy) of: (i) the past marine transgression occurred during MIS 5.5 highstand 119 kyrss BP; (ii) the coastline regression occurred during the last glacial maximum MIS 2 (21.5 krs cal BP); and (iii) the potential marine submersion for 2100 and 2300. The objective of this multidisciplinary study is to provide maps of sea level rise future scenarios using the IPCC RCP 8.5 2019 projections and glacio-hydro-isostatic movements for the above selected coastal zones (considered tectonically stable), which are the locations of touristic resorts, railways and heritage sites. We estimated a potential loss of land for the above areas of between about 146 km2 (IPCC 2019-RCP8.5 scenario) and 637 km2 along a coastline length of about 268 km.


Antiquity ◽  
2017 ◽  
Vol 91 (357) ◽  
pp. 784-792 ◽  
Author(s):  
Michael Fradley ◽  
Nichole Sheldrick

In a recent article, Parcak et al. (2016) presented the results of a study in which they used satellite imagery to evaluate looting and other damage at over one thousand heritage sites in Egypt. Assessing imagery dating between 2002 and 2013, their results indicated an increase in visible damage to sites during this period caused by looting and encroachment, which by Parcak et al.’s definition “includes building development, cemetery growth, agricultural expansion and intentional damage through targeted destruction” (2016: 190). Their findings support the work of previous authors who have documented an increase in looting and other damage to archaeological sites connected with increasing nationwide economic and political instability (e.g. Ikram 2013; Ikram & Hanna 2013).


GIS Business ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 12-14
Author(s):  
Eicher, A

Our goal is to establish the earth observation data in the business world Unser Ziel ist es, die Erdbeobachtungsdaten in der Geschäftswelt zu etablieren


Sign in / Sign up

Export Citation Format

Share Document