scholarly journals Hyperspectral Remote Sensing of TiO2 Concentration in Cementitious Material Based on Machine Learning Approaches

2022 ◽  
Vol 14 (1) ◽  
pp. 189
Author(s):  
Tae-Min Oh ◽  
Seungil Baek ◽  
Tae-Hyun Kong ◽  
Sooyoon Koh ◽  
Jaehun Ahn ◽  
...  

Titanium dioxide (TiO2) is a photocatalyst that can be used to remove nitrogen oxide (NOx). When applied to cementitious materials, it reacts with photons in sunlight or artificially generated light to reduce the concentration of particulate matter in the atmosphere. The concentration of TiO2 applied to the cementitious surface is difficult to quantify in a non-destructive manner after its application; however, knowledge of this residual amount is important for inspection and the evaluation of life expectancy. This study proposes a remote sensing technique that can estimate the concentration of TiO2 in the cementitious surface using a hyperspectral sensor. In the experiment, cement cores of varying TiO2 concentration and carbon contents were prepared and the surfaces were observed by TriOS RAMSES, a directional hyperspectral sensor. Machine-learning-based algorithms were then trained to estimate the TiO2 concentration under varying base material conditions. The results revealed that the best-performing algorithms produced TiO2 concentration estimates with a ~6% RMSE and a correlation close to 0.8. This study presents a robust machine learning model to estimate TiO2 and activated carbon concentration with high accuracy, which can be applied to abrasion monitoring of TiO2 and activated carbon in concrete structures.

2020 ◽  
Vol 12 (10) ◽  
pp. 1586
Author(s):  
Leonardo F. Arias-Rodriguez ◽  
Zheng Duan ◽  
Rodrigo Sepúlveda ◽  
Sergio I. Martinez-Martinez ◽  
Markus Disse

Remote-sensing-based machine learning approaches for water quality parameters estimation, Secchi Disk Depth (SDD) and Turbidity, were developed for the Valle de Bravo reservoir in central Mexico. This waterbody is a multipurpose reservoir, which provides drinking water to the metropolitan area of Mexico City. To reveal the water quality status of inland waters in the last decade, evaluation of MERIS imagery is a substantial approach. This study incorporated in-situ collected measurements across the reservoir and remote sensing reflectance data from the Medium Resolution Imaging Spectrometer (MERIS). Machine learning approaches with varying complexities were tested, and the optimal model for SDD and Turbidity was determined. Cross-validation demonstrated that the satellite-based estimates are consistent with the in-situ measurements for both SDD and Turbidity, with R2 values of 0.81 to 0.86 and RMSE of 0.15 m and 0.95 nephelometric turbidity units (NTU). The best model was applied to time series of MERIS images to analyze the spatial and temporal variations of the reservoir’s water quality from 2002 to 2012. Derived analysis revealed yearly patterns caused by dry and rainy seasons and several disruptions were identified. The reservoir varied from trophic to intermittent hypertrophic status, while SDD ranged from 0–1.93 m and Turbidity up to 23.70 NTU. Results suggest the effects of drought events in the years 2006 and 2009 on water quality were correlated with water quality detriment. The water quality displayed slow recovery through 2011–2012. This study demonstrates the usefulness of satellite observations for supporting inland water quality monitoring and water management in this region.


2020 ◽  
Vol 28 (4) ◽  
pp. 532-551
Author(s):  
Blake Miller ◽  
Fridolin Linder ◽  
Walter R. Mebane

Supervised machine learning methods are increasingly employed in political science. Such models require costly manual labeling of documents. In this paper, we introduce active learning, a framework in which data to be labeled by human coders are not chosen at random but rather targeted in such a way that the required amount of data to train a machine learning model can be minimized. We study the benefits of active learning using text data examples. We perform simulation studies that illustrate conditions where active learning can reduce the cost of labeling text data. We perform these simulations on three corpora that vary in size, document length, and domain. We find that in cases where the document class of interest is not balanced, researchers can label a fraction of the documents one would need using random sampling (or “passive” learning) to achieve equally performing classifiers. We further investigate how varying levels of intercoder reliability affect the active learning procedures and find that even with low reliability, active learning performs more efficiently than does random sampling.


Author(s):  
A B Potgieter ◽  
Yan Zhao ◽  
Pablo J Zarco-Tejada ◽  
Karine Chenu ◽  
Yifan Zhang ◽  
...  

Abstract The downside risk of crop production affects the entire supply chain of the agricultural industry nationally and globally. This also has a profound impact on food security, and thus livelihoods, in many parts of the world. The advent of high temporal, spatial and spectral resolution remote sensing platforms, specifically during the last five years, and the advancement in software pipelines and cloud computing have resulted in the collating, analysing and application of “BIG DATA” systems, especially in agriculture. Furthermore, the application of traditional and novel computational and machine learning approaches is assisting in resolving complex interactions, to reveal components of eco-physiological systems that were previously deemed either “too difficult” to solve or “unseen”. In this review, digital technologies encompass mathematical, computational, proximal- and remote sensing technologies. Here, we review the current state of digital technologies and their application in broad acre cropping systems globally and in Australia. More specifically, we discuss the advances in (i) remote sensing platforms, (ii) machine learning approaches to discriminate between crops, and (iii) the prediction of crop phenological stages from both sensing and crop simulation systems for major Australian winter crops. An integrated solution is proposed to allow accurate development, validation and scalability of predictive tools for crop phenology mapping at within-field scales, across extensive cropping areas.


Electronics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 219 ◽  
Author(s):  
Sweta Bhattacharya ◽  
Siva Rama Krishnan S ◽  
Praveen Kumar Reddy Maddikunta ◽  
Rajesh Kaluri ◽  
Saurabh Singh ◽  
...  

The enormous popularity of the internet across all spheres of human life has introduced various risks of malicious attacks in the network. The activities performed over the network could be effortlessly proliferated, which has led to the emergence of intrusion detection systems. The patterns of the attacks are also dynamic, which necessitates efficient classification and prediction of cyber attacks. In this paper we propose a hybrid principal component analysis (PCA)-firefly based machine learning model to classify intrusion detection system (IDS) datasets. The dataset used in the study is collected from Kaggle. The model first performs One-Hot encoding for the transformation of the IDS datasets. The hybrid PCA-firefly algorithm is then used for dimensionality reduction. The XGBoost algorithm is implemented on the reduced dataset for classification. A comprehensive evaluation of the model is conducted with the state of the art machine learning approaches to justify the superiority of our proposed approach. The experimental results confirm the fact that the proposed model performs better than the existing machine learning models.


2021 ◽  
Author(s):  
Teresa Pizzolla ◽  
Silvano Fortunato Dal Sasso ◽  
Ruodan Zhuang ◽  
Alonso Pizarro ◽  
Salvatore Manfreda

<p>Soil moisture (SM) is an essential variable in the earth system as it influences water, energy and, carbon fluxes between the land surface and the atmosphere. The SM spatio-temporal variability requires detailed analyses, high-definition optics and fast computing approaches for near real-time SM estimation at different spatial scales. Remote Sensing-based Unmanned Aerial Systems (UASs) represents the actual solution providing low-cost approaches to meet the requirements of spatial, spectral and temporal resolutions [1; 3; 4]. In this context, a proper land use classification is crucial in order to discriminate the behaviors of vegetation and bare soil in such high-resolution imagery. Therefore, high-resolution UASs-based imagery requires a specific images classification approach also considering the illumination conditions. In this work, the land use classification was carried out using a methodology based on a combined machine learning approaches: k-means clustering algorithm for removing shadow pixels from UASs images and, binary classifier for vegetation filtering. This approach led to identifying the bare soil on which SM estimation was computed using the Apparent Thermal Inertia (ATI) method [2]. The estimated SM values were compared with field measurements obtaining a good correlation (R<sup>2</sup> = 0.80). The accuracy of the results shows good reliability of the procedure and allows extending the use of UASs also in unclassified areas and ungauged basins, where the monitoring of the SM is very complex.</p><p><strong>References</strong></p><p>[1] Manfreda, S., McCabe, M.F., Miller, P.E., Lucas, R., Pajuelo Madrigal, V., Mallinis, G., Ben Dor, E., Helman, D., Estes, L., Ciraolo, G., et al. On the Use of Unmanned Aerial Systems for Environmental Monitoring, Remote Sensing, 2018, 10, 641.</p><p>[2] Minacapilli, M., Cammalleri, C., Ciraolo, G., D’Asaro, F., Iovino, M., and Maltese, A. Thermal Inertia Modeling for Soil Surface Water Content Estimation: A Laboratory Experiment. Soil. Sci. Soc. Amer. J. 2012, vol.76, n.1, pp. 92–100</p><p>[3] Paruta, A., P. Nasta, G. Ciraolo, F. Capodici, S. Manfreda, N. Romano, E. Bendor, Y. Zeng, A. Maltese, S. F. Dal Sasso and R. Zhuang, A geostatistical approach to map near-surface soil moisture through hyper-spatial resolution thermal inertia, IEEE Transactions on Geoscience and Remote Sensing, 2020.</p><p>[4] Petropoulos, G.P., A. Maltese, T. N. Carlson, G. Provenzano, A. Pavlides, G. Ciraolo, D. Hristopulos, F. Capodici, C. Chalkias, G. Dardanelli, S. Manfreda, Exploring the use of UAVs with the simplified “triangle” technique for Soil Water Content and Evaporative Fraction retrievals in a Mediterranean setting, International Journal of Remote Sensing, 2020.</p>


2020 ◽  
Vol 12 (20) ◽  
pp. 3292
Author(s):  
Sara Akodad ◽  
Lionel Bombrun ◽  
Junshi Xia ◽  
Yannick Berthoumieu ◽  
Christian Germain

Remote sensing image scene classification, which consists of labeling remote sensing images with a set of categories based on their content, has received remarkable attention for many applications such as land use mapping. Standard approaches are based on the multi-layer representation of first-order convolutional neural network (CNN) features. However, second-order CNNs have recently been shown to outperform traditional first-order CNNs for many computer vision tasks. Hence, the aim of this paper is to show the use of second-order statistics of CNN features for remote sensing scene classification. This takes the form of covariance matrices computed locally or globally on the output of a CNN. However, these datapoints do not lie in an Euclidean space but a Riemannian manifold. To manipulate them, Euclidean tools are not adapted. Other metrics should be considered such as the log-Euclidean one. This consists of projecting the set of covariance matrices on a tangent space defined at a reference point. In this tangent plane, which is a vector space, conventional machine learning algorithms can be considered, such as the Fisher vector encoding or SVM classifier. Based on this log-Euclidean framework, we propose a novel transfer learning approach composed of two hybrid architectures based on covariance pooling of CNN features, the first is local and the second is global. They rely on the extraction of features from models pre-trained on the ImageNet dataset processed with some machine learning algorithms. The first hybrid architecture consists of an ensemble learning approach with the log-Euclidean Fisher vector encoding of region covariance matrices computed locally on the first layers of a CNN. The second one concerns an ensemble learning approach based on the covariance pooling of CNN features extracted globally from the deepest layers. These two ensemble learning approaches are then combined together based on the strategy of the most diverse ensembles. For validation and comparison purposes, the proposed approach is tested on various challenging remote sensing datasets. Experimental results exhibit a significant gain of approximately 2% in overall accuracy for the proposed approach compared to a similar state-of-the-art method based on covariance pooling of CNN features (on the UC Merced dataset).


2021 ◽  
Author(s):  
Harry Magunia ◽  
Simone Lederer ◽  
Raphael Verbuecheln ◽  
Bryant Joseph Gilot ◽  
Michael Koeppen ◽  
...  

Abstract Background. Intensive Care Resources are heavily utilized during the COVID-19 pandemic. However, risk stratification and prediction of SARS-CoV-2 patient clinical outcomes upon ICU admission remain inadequate. This study aimed to develop a machine learning model, based on retrospective & prospective clinical data, to stratify patient risk and predict ICU survival and outcomes.Methods. A Germany-wide electronic registry was established to pseudonymously collect admission, therapeutic and discharge information of SARS-CoV-2 ICU patients retrospectively and prospectively. Machine learning approaches were evaluated for the accuracy and interpretability of predictions. The Explainable Boosting Machine approach was selected as the most suitable method. Individual, non-linear shape functions for predictive parameters and parameter interactions are reported. Results. 1,039 patients were included in the Explainable Boosting Machine model, 596 patients retrospectively collected, and 443 patients prospectively collected. The model for prediction of general ICU outcome was shown to be more reliable to predict “survival”. Age, inflammatory and thrombotic activity, and severity of ARDS at ICU admission were shown to be predictive of ICU survival. Patients’ age, pulmonary dysfunction and transfer from an external institution were predictors for ECMO therapy. The interaction of patient age with D-dimer levels on admission and creatinine levels with SOFA score without GCS were predictors for renal replacement therapy. Conclusions. Using Explainable Boosting Machine analysis, we confirmed and weighed previously reported and identified novel predictors for outcome in critically ill COVID-19 patients. Using this strategy, predictive modeling of COVID-19 ICU patient outcomes can be performed overcoming the limitations of linear regression models.Trial registration. “ClinicalTrials” (clinicaltrials.gov) under NCT04455451


Author(s):  
R. Roscher ◽  
B. Bohn ◽  
M. F. Duarte ◽  
J. Garcke

Abstract. For some time now, machine learning methods have been indispensable in many application areas. Especially with the recent development of efficient neural networks, these methods are increasingly used in the sciences to obtain scientific outcomes from observational or simulated data. Besides a high accuracy, a desired goal is to learn explainable models. In order to reach this goal and obtain explanation, knowledge from the respective domain is necessary, which can be integrated into the model or applied post-hoc. We discuss explainable machine learning approaches which are used to tackle common challenges in the bio- and geosciences, such as limited amount of labeled data or the provision of reliable and scientific consistent results. We show that recent advances in machine learning to enhance transparency, interpretability, and explainability are helpful in overcoming these challenges.


Sign in / Sign up

Export Citation Format

Share Document