scholarly journals Geodetic Mass Balance of Haxilegen Glacier No. 51, Eastern Tien Shan, from 1964 to 2018

2022 ◽  
Vol 14 (2) ◽  
pp. 272
Author(s):  
Chunhai Xu ◽  
Zhongqin Li ◽  
Feiteng Wang ◽  
Jianxin Mu ◽  
Xin Zhang

The eastern Tien Shan hosts substantial mid-latitude glaciers, but in situ glacier mass balance records are extremely sparse. Haxilegen Glacier No. 51 (eastern Tien Shan, China) is one of the very few well-measured glaciers, and comprehensive glaciological measurements were implemented from 1999 to 2011 and re-established in 2017. Mass balance of Haxilegen Glacier No. 51 (1999–2015) has recently been reported, but the mass balance record has not extended to the period before 1999. Here, we used a 1:50,000-scale topographic map and long-range terrestrial laser scanning (TLS) data to calculate the area, volume, and mass changes for Haxilegen Glacier No. 51 from 1964 to 2018. Haxilegen Glacier No. 51 lost 0.34 km2 (at a rate of 0.006 km2 a−1 or 0.42% a−1) of its area during the period 1964–2018. The glacier experienced clearly negative surface elevation changes and geodetic mass balance. Thinning occurred almost across the entire glacier surface, with a mean value of −0.43 ± 0.12 m a−1. The calculated average geodetic mass balance was −0.36 ± 0.12 m w.e. a−1. Without considering the error bounds of mass balance estimates, glacier mass loss over the past 50 years was in line with the observed and modeled mass balance (−0.37 ± 0.22 m w.e. a−1) that was published for short time intervals since 1999 but was slightly less negative than glacier mass loss in the entire eastern Tien Shan. Our results indicate that Riegl VZ®-6000 TLS can be widely used for mass balance measurements of unmonitored individual glaciers.

2018 ◽  
Author(s):  
Chunhai Xu ◽  
Zhongqin Li ◽  
Huilin Li ◽  
Feiteng Wang ◽  
Ping Zhou

Abstract. The direct glaciological method typically provides in situ observations of annual or seasonal surface mass balance, but can only be implemented through a succession of intensive in situ measurements of measuring networks of stakes and snow pits. This has contributed to glacier surface mass-balance measurements being sparse and often discontinuous in the Tien Shan. Nevertheless, long-term glacier mass-balance measurements are the basis for understanding climate–glacier interactions and projecting future water availability for glacierized catchments in the Tien Shan. Riegl VZ®-6000 long-range terrestrial laser scanning (TLS), typically using class 3B laser beams, is exceptionally well suited for measuring snowy and icy terrain in repeated glacier mapping, and subsequently annual and seasonal geodetic mass balance can be determined. This paper introduces the applied TLS for monitoring summer and annual surface elevation and geodetic mass changes of Urumqi Glacier No. 1 (UG1) as well as delineating accurate glacier boundaries for two consecutive years (2015-17), and discusses the potential of such technology in glaciological applications. Three-dimensional changes of ice and firn/snow bodies and the corresponding densities were considered for the volume-to-mass conversion. UG1 showed pronounced thinning and mass loss for the four investigated periods; glacier-wide geodetic mass balance in the mass-balance year 2015-16 was slightly more negative than in 2016-17. The majority of TLS-derived geodetic elevation changes at individual stakes were slightly positive, but showed a close correlation with the glaciological elevation changes (changes in exposed stake height) of individual stakes (R2 ≥ 0.90). Statistical comparison shows that agreement between the glaciological and geodetic mass balances can be considered satisfying, indicating that the TLS system yields accurate results and has the potential to monitor remote and inaccessible glacier areas where no glaciological measurements are available.


2009 ◽  
Vol 55 (192) ◽  
pp. 666-680 ◽  
Author(s):  
C. Rolstad ◽  
T. Haug ◽  
B. Denby

AbstractEstimates of glacier mass balance using geodetic methods can differ significantly from estimates using direct glaciological field-based measurements. To determine if such differences are real or methodological, there is a need to improve uncertainty estimates in both methods. In this paper, we focus on the uncertainty of geodetic methods and describe a geostatistical technique that takes into account the spatial correlation of the elevation differences when calculating spatially averaged elevation changes. We apply this method to the western Svartisen ice cap, Norway, using elevation differences from the surrounding bedrock derived from stereophotogrammetry. We show that the uncertainty is not only dependent on the standard error of the individual elevation differences but is also dependent on the size of the averaging area and the scale of the spatial correlation. To assess if the geostatistical analysis made over bedrock is applicable to glacier surfaces, we use concurrent photogrammetrical and laser scanning data from bedrock and a range of glacier surfaces to evaluate the dependency of the geostatistical analysis on the surface type. The estimated geodetic mass balance, and its uncertainty, is −2.6 ± 0.9 m w.e. for the period 1968–85, and −2.0 ± 2.2 m w.e. for 1985–2002.


2019 ◽  
Vol 13 (9) ◽  
pp. 2361-2383 ◽  
Author(s):  
Chunhai Xu ◽  
Zhongqin Li ◽  
Huilin Li ◽  
Feiteng Wang ◽  
Ping Zhou

Abstract. The direct glaciological method provides in situ observations of annual or seasonal surface mass balance, but can only be implemented through a succession of intensive in situ measurements of field networks of stakes and snow pits. This has contributed to glacier surface mass-balance measurements being sparse and often discontinuous in the Tien Shan. Nevertheless, long-term glacier mass-balance measurements are the basis for understanding climate–glacier interactions and projecting future water availability for glacierized catchments in the Tien Shan. Riegl VZ®-6000 long-range terrestrial laser scanner (TLS), typically using class 3B laser beams, is exceptionally well suited for repeated glacier mapping, and thus determination of annual and seasonal geodetic mass balance. This paper introduces the applied TLS for monitoring summer and annual surface elevation and geodetic mass changes of Urumqi Glacier No. 1 as well as delineating accurate glacier boundaries for 2 consecutive mass-balance years (2015–2017), and discusses the potential of such technology in glaciological applications. Three-dimensional changes of ice and firn–snow bodies and the corresponding densities were considered for the volume-to-mass conversion. The glacier showed pronounced thinning and mass loss for the four investigated periods; glacier-wide geodetic mass balance in the mass-balance year 2015–2016 was slightly more negative than in 2016–2017. Statistical comparison shows that agreement between the glaciological and geodetic mass balances can be considered satisfactory, indicating that the TLS system yields accurate results and has the potential to monitor remote and inaccessible glacier areas where no glaciological measurements are available as the vertical velocity component of the glacier is negligible. For wide applications of the TLS in glaciology, we should use stable scan positions and in-situ-measured densities of snow–firn to establish volume-to-mass conversion.


2021 ◽  
Vol 13 (8) ◽  
pp. 3791-3818
Author(s):  
Dorothea Stumm ◽  
Sharad Prasad Joshi ◽  
Tika Ram Gurung ◽  
Gunjan Silwal

Abstract. The glacier mass balance is an important variable to describe the climate system and is used for various applications like water resource management or runoff modelling. The direct or glaciological method and the geodetic method are the standard methods to quantify glacier mass changes, and both methods are an integral part of international glacier monitoring strategies. In 2011, we established two glacier mass-balance programmes on Yala and Rikha Samba glaciers in the Nepal Himalaya. Here we present the methods and data of the directly measured annual mass balances for the first six mass-balance years for both glaciers from 2011/2012 to 2016/2017. For Yala Glacier we additionally present the directly measured seasonal mass balance from 2011 to 2017, as well as the mass balance from 2000 to 2012 obtained with the geodetic method. In addition, we analysed glacier length changes for both glaciers. The directly measured average annual mass-balance rates of Yala and Rikha Samba glaciers are −0.80 ± 0.28 and −0.39 ± 0.32 m w.e. a−1, respectively, from 2011 to 2017. The geodetically measured annual mass-balance rate of Yala Glacier based on digital elevation models from 2000 and 2012 is −0.74 ± 0.53 m w.e. The cumulative mass loss for the period 2011 to 2017 for Yala and Rikha Samba glaciers is −4.80 ± 0.69 and −2.34 ± 0.79 m w.e., respectively. The mass loss on Yala Glacier from 2000 to 2012 is −8.92 ± 6.33 m w.e. The winter balance of Yala Glacier is positive, and the summer balance is negative in every investigated year. The summer balance determines the annual balance. Compared to regional mean geodetic mass-balance rates in the Nepalese Himalaya, the mean mass-balance rate of Rikha Samba Glacier is in a similar range, and the mean mass-balance rate of Yala Glacier is more negative because of the small and low-lying accumulation area. During the study period, a change of Yala Glacier's surface topography has been observed with glacier thinning and downwasting. The retreat rates of Rikha Samba Glacier are higher than for Yala Glacier. From 1989 to 2013, Rikha Samba Glacier retreated 431 m (−18.0 m a−1), and from 1974 to 2016 Yala Glacier retreated 346 m (−8.2 m a−1). The data of the annual and seasonal mass balances, point mass balance, geodetic mass balance, and length changes are accessible from the World Glacier Monitoring Service (WGMS, 2021), https://doi.org/10.5904/wgms-fog-2021-05.


2019 ◽  
Vol 11 (24) ◽  
pp. 2890 ◽  
Author(s):  
Songtao Ai ◽  
Xi Ding ◽  
Florian Tolle ◽  
Zemin Wang ◽  
Xi Zhao

Geodetic mass changes in the Svalbard glaciers Austre Lovénbreen and Pedersenbreen were studied via high-precision real-time kinematic (RTK)-global positioning system (GPS) measurements from 2013 to 2015. To evaluate the elevation changes of the two Svalbard glaciers, more than 10,000 GPS records for each glacier surface were collected every year from 2013 to 2015. The results of several widely used interpolation methods (i.e., inverse distance weighting (IDW), ordinary kriging (OK), universal kriging (UK), natural neighbor (NN), spline interpolation, and Topo to Raster (TTR) interpolation) were compared. Considering the smoothness and accuracy of the glacier surface, NN interpolation was selected as the most suitable interpolation method to generate a surface digital elevation model (DEM). In addition, we compared two procedures for calculating elevation changes: using DEMs generated from the direct interpolation of the RTK-GPS points and using the elevation bias of crossover points from the RTK-GPS tracks in different years. Then, the geodetic mass balances were calculated by converting the elevation changes to their water equivalents. Comparing the geodetic mass balances calculated with and without considering snow depth revealed that ignoring the effect of snow depth, which differs greatly over a short time interval, might lead to bias in mass balance investigation. In summary, there was a positive correlation between the geodetic mass balance and the corresponding elevation. The mass loss increased with decreasing elevation, and the mean annual gradients of the geodetic mass balance along the elevation of Austre Lovénbreen and Pedersenbreen in 2013–2015 were approximately 2.60‰ and 2.35‰, respectively. The gradients at the glacier snouts were three times larger than those over the whole glaciers. Additionally, some mass gain occurred in certain high-elevation regions. Compared with a 2019 DEM generated from unmanned aerial vehicle measurement, the glacier snout areas presented an accelerating thinning situation in 2015–2019.


2020 ◽  
Vol 66 (260) ◽  
pp. 927-937
Author(s):  
Mingyang Lv ◽  
Duncan J. Quincey ◽  
Huadong Guo ◽  
Owen King ◽  
Guang Liu ◽  
...  

AbstractGlaciers in the eastern Pamir have reportedly been gaining mass during recent decades, even though glaciers in most other regions in High Mountain Asia have been in recession. Questions still remain about whether the trend is strengthening or weakening, and how far the positive balances extend into the eastern Pamir. To address these gaps, we use three different digital elevation models to reconstruct glacier surface elevation changes over two periods (2000–09 and 2000–15/16). We characterize the eastern Pamir as a zone of transition from positive to negative mass balance with the boundary lying at the northern end of Kongur Tagh, and find that glaciers situated at higher elevations are those with the most positive balances. Most (67% of 55) glaciers displayed a net mass gain since the 21st century. This led to an increasing regional geodetic glacier mass balance from −0.06 ± 0.16 m w.e. a−1 in 2000–09 to 0.06 ± 0.04 m w.e. a−1 in 2000–15/16. Surge-type glaciers, which are prevalent in the eastern Pamir, showed fluctuations in mass balance on an individual scale during and after surges, but no statistical difference compared to non-surge-type glaciers when aggregated across the region.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yanjun Che ◽  
Mingjun Zhang ◽  
Zhongqin Li ◽  
Yanqiang Wei ◽  
Zhuotong Nan ◽  
...  

Abstract Energy exchanges between atmosphere and glacier surface control the net energy available for snow and ice melt. Based on the meteorological records in Urumqi River Glacier No.1 (URGN1) in the Chinese Tien Shan during the period of 2012–2015, an energy-mass balance model was run to assess the sensitivity of glacier mass balance to air temperature (T), precipitation (P), incoming shortwave radiation (Sin), relative humidity (RH), and wind speed (u) in the URGN1, respectively. The results showed that the glacier melting was mainly controlled by the net shortwave radiation. The glacier mass balance was very sensitivity to albedo for snow and the time scale determining how long the snow albedo approaches the albedo for firn after a snowfall. The net annual mass balance of URGN1 was decreased by 0.44 m w.e. when increased by 1 K in air temperature, while it was increased 0.30 m w.e. when decreased by 1 K. The net total mass balance increased by 0.55 m w.e. when increased precipitation by 10%, while it was decreased by 0.61 m w.e. when decreased precipitation by 10%. We also found that the change in glacier mass balance was non-linear when increased or decreased input condition of climate change. The sensitivity of mass balance to increase in Sin, u, and RH were at −0.015 m w.e.%−1, −0.020 m w.e.%−1, and −0.018 m w.e.%−1, respectively, while they were at 0.012 m w.e.%−1, 0.027 m w.e.%−1, and 0.017 m w.e.%−1 when decreasing in those conditions, respectively. In addition, the simulations of coupled perturbation for temperature and precipitation indicated that the precipitation needed to increase by 23% could justly compensate to the additional mass loss due to increase by 1 K in air temperature. We also found that the sensitivities of glacier mass balance in response to climate change were different in different mountain ranges, which were mainly resulted from the discrepancies in the ratio of snowfall to precipitation during the ablation season, the amount of melt energy during the ablation season, and precipitation seasonality in the different local regions.


2020 ◽  
Vol 12 (5) ◽  
pp. 864 ◽  
Author(s):  
Shaoting Ren ◽  
Massimo Menenti ◽  
Li Jia ◽  
Jing Zhang ◽  
Jingxiao Zhang ◽  
...  

Mountain glaciers are excellent indicators of climate change and have an important role in the terrestrial water cycle and food security in many parts of the world. Glaciers are the major water source of rivers and lakes in the Nyainqentanglha Mountains (NM) region, where the glacier area has the second largest extent on the Tibetan Plateau. The potential of the high spatial resolution ZiYuan-3 (ZY-3) Three-Line-Array (TLA) stereo images to retrieve glacier mass balance has not been sufficiently explored. In this study, we optimized the procedure to extract a Digital Elevation Model (DEM) from ZY-3 TLA stereo images and estimated the geodetic mass balance of representative glaciers in the two typical areas of the NM using ZY-3 DEMs and the C-band Shuttle Radar Topography Mission (SRTM) DEM in three periods, i.e., 2000–2013, 2013–2017 and 2000–2017. The results provide detailed information towards better understanding of glacier change and specifically show that: (1) with our new stereo procedure, ZY-3 TLA data can significantly increase point cloud density and decrease invalid data on the glacier surface map to generate a high resolution (5 m) glacier mass balance map; (2) the glacier mass balance in both the Western Nyainqentanglha Mountains (WNM) and Eastern Nyainqentanglha Mountains (ENM) was negative in 2000–2017, and experienced faster mass loss in recent years (2013–2017) in the WNM. Overall, the glaciers in the western and eastern NM show different change patterns since they are influenced by different climate regimes; the glacier mass balances in WNM was –0.22 ± 0.23 m w.e. a−1 and –0.43 ± 0.06 m w.e. a−1 in 2000–2013 and 2013–2017, respectively, while in 2000–2017, it was –0.30 ± 0.19 m w.e. a−1 in the WNM and –0.56 ± 0.20 m w.e. a−1 in the ENM; (3) in the WNM, the glaciers experienced mass loss in 2000–2013 and 2013–2017 in the ablation zone, while in the accumulation zone mass increased in 2000–2013 and a large mass loss occurred in 2013–2017; as regards the ENM, the glacier mass balance was negative in 2000–2017 in both zones; (4) glacier mass balance can be affected by the fractional abundance of debris and glacier slope; (5) the glacier mass balances retrieved by ZY-3 and TanDEM-X data agreed well in the ablation zone, while a large difference occurred in the accumulation zone because of the snow/firn penetration of the X-band SAR signal.


2020 ◽  
Vol 8 (2) ◽  
pp. 119-139
Author(s):  
Eleanor A. Bash ◽  
Brian J. Moorman ◽  
Brian Menounos ◽  
Allison Gunther

The combined use of unmanned aerial vehicles (UAVs) and structure-from-motion (SfM) is rapidly growing as a cost-effective alternative to airborne laser scanning (lidar) for reconstructing glacier surfaces. Here we present a thorough analysis of the precision and accuracy of a photogrammetric point cloud (PPC) constructed through SfM from UAV-acquired imagery over the spring snow surface at Haig Glacier, Alberta, Canada, the first of its kind in a glaciological setting. An aerial lidar survey conducted concurrently with UAV surveys was used to examine spatial patterns in the PPC accuracy. We found a median error in the PPC of −0.046 ± 0.067 m, with a 95% quantile of 0.218 m. Mean precision of the PPC was 0.199 m, with large spatially clustered outliers. We found an association between high-error, low-precision, and high-surface roughness in the PPC, likely due to illumination characteristics of the snow surface. Glacier surface reconstructions are important for geodetic mass balance measurements, giving key insights into changing climate where in situ measurements are difficult to obtain. The PPC errors are small enough that they would have minimal effects on total mass balance, should the technique be applied across the glacier.


2019 ◽  
Vol 65 (250) ◽  
pp. 270-278 ◽  
Author(s):  
SHER MUHAMMAD ◽  
LIDE TIAN ◽  
MARCUS NÜSSER

ABSTRACTAlthough glaciers in High Mountain Asia produce an enormous amount of water used by downstream populations, they remain poorly observed in the field. This study presents a geodetic mass balance of the glaciers in the Astore Basin (with differential GPS (dGPS) measurements on Harcho glacier) between 1999 and 2016. Changes near the terminus of Harcho glacier (below 3800 m a.s.l.) featured heterogeneous surface elevation changes, whereas the middle section shows the most negative changes. The surface elevation changes were positive above 4200 m a.s.l. The average annual mass balance was −0.08 ± 0.07 m w.e. a−1 derived from a dGPS and DEM comparison whereas Advanced Spaceborne Thermal Emission and Reflection Radiometer DEM-based results show a slightly positive, that is 0.03 ± 0.24 m w.e. a−1 in the same period. In contrast, the terminus indicates a substantial retreat of ~368 m (4.5 m a−1) between 1934 and 2016. The average mass balance of 19 glaciers (>2 km2) covering ~60% of the total glaciers in the Basin exhibit no net mass loss in the period of 2000−2016 and follow a pattern similar to adjacent Karakoram glaciers.


Sign in / Sign up

Export Citation Format

Share Document