scholarly journals A Minimal Metric for the Characterization of Acoustic Noise Emitted by Underwater Vehicles

Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6644
Author(s):  
Giacomo Picardi ◽  
Clara Borrelli ◽  
Augusto Sarti ◽  
Giovanni Chimienti ◽  
Marcello Calisti

Underwater robots emit sound during operations which can deteriorate the quality of acoustic data recorded by on-board sensors or disturb marine fauna during in vivo observations. Notwithstanding this, there have only been a few attempts at characterizing the acoustic emissions of underwater robots in the literature, and the datasheets of commercially available devices do not report information on this topic. This work has a twofold goal. First, we identified a setup consisting of a camera directly mounted on the robot structure to acquire the acoustic data and two indicators (i.e., spectral roll-off point and noise introduced to the environment) to provide a simple and intuitive characterization of the acoustic emissions of underwater robots carrying out specific maneuvers in specific environments. Second, we performed the proposed analysis on three underwater robots belonging to the classes of remotely operated vehicles and underwater legged robots. Our results showed how the legged device produced a clearly different signature compared to remotely operated vehicles which can be an advantage in operations that require low acoustic disturbance. Finally, we argue that the proposed indicators, obtained through a standardized procedure, may be a useful addition to datasheets of existing underwater robots.

Author(s):  
Christopher Eckersley ◽  
Joost Op 't Eynde ◽  
Mitchell Abrams ◽  
Cameron R. Bass

Abstract Cavitation has been shown to have implications for head injury, but currently there is no solution for detecting the formation of cavitation through the skull during blunt impact. The goal of this communication is to confirm the wideband acoustic wavelet signature of cavitation collapse, and determine that this signature can be differentiated from the noise of a blunt impact. A controlled, laser induced cavitation study was conducted in an isolated water tank to confirm the wide band acoustic signature of cavitation collapse in the absence of a blunt impact. A clear acrylic surrogate head was impacted to induce blunt impact cavitation. The bubble formation was imaged using a high speed camera, and the collapse was synched up with the wavelet transform of the acoustic emission. Wideband acoustic response is seen in wavelet transform of positive laser induced cavitation tests, but absent in laser induced negative controls. Clear acrylic surrogate tests showed the wideband acoustic wavelet signature of collapse can be differentiated from acoustic noise generated by a blunt impact. Broadband acoustic signal can be used as a biomarker to detect the incidence of cavitation through the skull as it consists of frequencies that are low enough to potentially pass through the skull but high enough to differentiate from blunt impact noise. This lays the foundation for a vital tool to conduct CSF cavitation research in-vivo.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
J. Carlos Gómez-Blanco ◽  
F. Javier Martínez-Reina ◽  
Domingo Cruz ◽  
J. Blas Pagador ◽  
Francisco M. Sánchez-Margallo ◽  
...  

Many urologists are currently studying new designs of ureteral stents to improve the quality of their operations and the subsequent recovery of the patient. In order to help during this design process, many computational models have been developed to simulate the behaviour of different biological tissues and provide a realistic computational environment to evaluate the stents. However, due to the high complexity of the involved tissues, they usually introduce simplifications to make these models less computationally demanding. In this study, the interaction between urine flow and a double-J stented ureter with a simplified geometry has been analysed. The Fluid-Structure Interaction (FSI) of urine and the ureteral wall was studied using three models for the solid domain: Mooney-Rivlin, Yeoh, and Ogden. The ureter was assumed to be quasi-incompressible and isotropic. Data obtained in previous studies from ex vivo and in vivo mechanical characterization of different ureters were used to fit the mentioned models. The results show that the interaction between the stented ureter and urine is negligible. Therefore, we can conclude that this type of models does not need to include the FSI and could be solved quite accurately assuming that the ureter is a rigid body and, thus, using the more simple Computational Fluid Dynamics (CFD) approach.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Mariam Lofty Khaled ◽  
Yelena Bykhovskaya ◽  
Chunfang Gu ◽  
Alice Liu ◽  
Michelle D. Drewry ◽  
...  

AbstractKeratoconus (KC) is the most common corneal ectatic disorder affecting >300,000 people in the US. KC normally has its onset in adolescence, progressively worsening through the third to fourth decades of life. KC patients report significant impaired vision-related quality of life. Genetic factors play an important role in KC pathogenesis. To identify novel genes in familial KC patients, we performed whole exome and genome sequencing in a four-generation family. We identified potential variants in the PPIP5K2 and PCSK1 genes. Using in vitro cellular model and in vivo gene-trap mouse model, we found critical evidence to support the role of PPIP5K2 in normal corneal function and KC pathogenesis. The gene-trap mouse showed irregular corneal surfaces and pathological corneal thinning resembling KC. For the first time, we have integrated corneal tomography and pachymetry mapping into characterization of mouse corneal phenotypes which could be widely implemented in basic and translational research for KC diagnosis and therapy in the future.


2008 ◽  
Vol 15 (9) ◽  
pp. 1374-1379 ◽  
Author(s):  
James E. Keller

ABSTRACT Antigenicities of several formalin-detoxified botulinum neurotoxin preparations were measured by inhibition and sandwich enzyme-linked immunosorbent assay (ELISA), and immunogenicity was studied in mice. The toxoids were derived primarily from the serotype A 150-kDa neurotoxin protein, while one toxoid was derived from the naturally occurring 900-kDa toxin-hemagglutinin complex. Antigenicity was severely compromised in two commercially available toxoids. A variety of new toxoids were synthesized in-house by optimizing formaldehyde reaction conditions. Three of the resulting toxoids were found to be antigenically identical to the native toxin, as measured by inhibition ELISA, in spite of showing a reduction of toxicity by more than 100,000-fold. Sandwich ELISAs indicated that the in-house toxoids were two- to threefold less antigenic than the neurotoxin compared to commercial toxoids, which were about 100-fold less antigenic. Mice were immunized twice, on day 0 and day 14. By day 28, relatively high toxin-specific immunoglobulin G (IgG) titers were detected in animals that had received any of the in-house toxoids, with greater than 99% being IgG1 and the remainder being IgG2. These immunized mice remained asymptomatic after being challenged with 50 to 1,000,000 50% lethal dose (LD50) units of the 900-kDa neurotoxin. In contrast, animals immunized with several different batches of commercially available toxoids did not develop measurable toxin-specific antibody titers. However, these mice survived neurotoxin challenges with 2 LD50 units but died when challenged with 6 LD50 units. Neutralizing titers measured from pools of sera generated with the in-house toxoid preparations ranged from 2.5 to 5 U/ml. In terms of predicting immunogenicity, inhibition ELISAs comparing each formalin toxoid to the parent toxin provided good insight for screening the new toxoids as well as for estimating their relative in vivo potencies. Inhibition ELISA data indicate that those toxoids that most closely resemble the native toxin are highly immunogenic and protective. The superior quality of these new toxoids makes them useful tools for continued use in ELISA development and for antitoxin production.


2018 ◽  
Vol 27 (5) ◽  
pp. 765-785 ◽  
Author(s):  
F. C. C. van Rhijn-Brouwer ◽  
H. Gremmels ◽  
J. O. Fledderus ◽  
M. C. Verhaar

Administration of mesenchymal stromal cells (MSCs) is a promising strategy to treat cardiovascular disease (CVD). As progenitor cells may be negatively affected by both age and comorbidity, characterization of MSC function is important to guide decisions regarding use of allogeneic or autologous cells. Definitive answers on which factors affect MSC function can also aid in selecting which MSC donors would yield the most therapeutically efficacious MSCs. Here we provide a narrative review of MSC function in CVD based on a systematic search. A total of 41 studies examining CVD-related MSC (dys)function were identified. These data show that MSC characteristics and regenerative potential are often affected by CVD. However, studies presented conflicting results, and directed assessment of MSC parameters relevant to regenerative medicine applications was lacking in many studies. The predictive ability of in vitro assays for in vivo efficacy was rarely assessed. There was no correlation between quality of study reporting and study findings. Age mismatch was also not associated with study findings or effect size. Future research should focus on assays that assess regenerative potential in MSCs and parameters that relate to clinical success.


2020 ◽  
Vol 477 (7) ◽  
pp. 1261-1286 ◽  
Author(s):  
Marie Anne Richard ◽  
Hannah Pallubinsky ◽  
Denis P. Blondin

Brown adipose tissue (BAT) has long been described according to its histological features as a multilocular, lipid-containing tissue, light brown in color, that is also responsive to the cold and found especially in hibernating mammals and human infants. Its presence in both hibernators and human infants, combined with its function as a heat-generating organ, raised many questions about its role in humans. Early characterizations of the tissue in humans focused on its progressive atrophy with age and its apparent importance for cold-exposed workers. However, the use of positron emission tomography (PET) with the glucose tracer [18F]fluorodeoxyglucose ([18F]FDG) made it possible to begin characterizing the possible function of BAT in adult humans, and whether it could play a role in the prevention or treatment of obesity and type 2 diabetes (T2D). This review focuses on the in vivo functional characterization of human BAT, the methodological approaches applied to examine these features and addresses critical gaps that remain in moving the field forward. Specifically, we describe the anatomical and biomolecular features of human BAT, the modalities and applications of non-invasive tools such as PET and magnetic resonance imaging coupled with spectroscopy (MRI/MRS) to study BAT morphology and function in vivo, and finally describe the functional characteristics of human BAT that have only been possible through the development and application of such tools.


1995 ◽  
Vol 74 (02) ◽  
pp. 673-679 ◽  
Author(s):  
C E Dempfle ◽  
S A Pfitzner ◽  
M Dollman ◽  
K Huck ◽  
G Stehle ◽  
...  

SummaryVarious assays have been developed for quantitation of soluble fibrin or fibrin monomer in clinical plasma samples, since this parameter directly reflects in vivo thrombin action on fibrinogen. Using plasma samples from healthy blood donors, patients with cerebral ischemic insult, patients with septicemia, and patients with venous thrombosis, we compared two immunologic tests using monoclonal antibodies against fibrin-specific neo-epitopes, and two functional tests based on the cofactor activity of soluble fibrin complexes in tPA-induced plasminogen activation. Test A (Enzymun®-Test FM) showed the best discriminating power among normal range and pathological samples. Test B (Fibrinostika® soluble fibrin) clearly separated normal range from pathological samples, but failed to discriminate among samples from patients with low grade coagulation activation in septicemia, and massive activation in venous thrombosis. Functional test C (Fibrin monomer test Behring) displayed good discriminating power between normal and pathological range samples, and correlated with test A (r = 0.61), whereas assay D (Coa-Set® Fibrin monomer) showed little discriminating power at values below 10 μg/ml and little correlation with other assays. Standardization of assays will require further characterization of analytes detected.


Sign in / Sign up

Export Citation Format

Share Document