scholarly journals Efficiency of Machine Learning Algorithms for the Determination of Macrovesicular Steatosis in Frozen Sections Stained with Sudan to Evaluate the Quality of the Graft in Liver Transplantation

Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 1993
Author(s):  
Fernando Pérez-Sanz ◽  
Miriam Riquelme-Pérez ◽  
Enrique Martínez-Barba ◽  
Jesús de la Peña-Moral ◽  
Alejandro Salazar Nicolás ◽  
...  

Liver transplantation is the only curative treatment option in patients diagnosed with end-stage liver disease. The low availability of organs demands an accurate selection procedure based on histological analysis, in order to evaluate the allograft. This assessment, traditionally carried out by a pathologist, is not exempt from subjectivity. In this sense, new tools based on machine learning and artificial vision are continuously being developed for the analysis of medical images of different typologies. Accordingly, in this work, we develop a computer vision-based application for the fast and automatic objective quantification of macrovesicular steatosis in histopathological liver section slides stained with Sudan stain. For this purpose, digital microscopy images were used to obtain thousands of feature vectors based on the RGB and CIE L*a*b* pixel values. These vectors, under a supervised process, were labelled as fat vacuole or non-fat vacuole, and a set of classifiers based on different algorithms were trained, accordingly. The results obtained showed an overall high accuracy for all classifiers (>0.99) with a sensitivity between 0.844 and 1, together with a specificity >0.99. In relation to their speed when classifying images, KNN and Naïve Bayes were substantially faster than other classification algorithms. Sudan stain is a convenient technique for evaluating ME in pre-transplant liver biopsies, providing reliable contrast and facilitating fast and accurate quantification through the machine learning algorithms tested.

2022 ◽  
Vol 31 (1) ◽  
pp. 207-222
Author(s):  
Marium Malik ◽  
Muhammad Waseem Iqbal ◽  
Syed Khuram Shahzad ◽  
Muhammad Tahir Mushtaq ◽  
Muhammad Raza Naqvi ◽  
...  

2020 ◽  
Author(s):  
Johannes Kirchebner ◽  
Moritz Günther ◽  
Martina Sonnweber ◽  
Alice King ◽  
Steffen Lau

Abstract Background: Prolonged forensic psychiatric hospitalizations have raised ethical, economic, and clinical concerns. Due to the confounded nature of factors affecting length of stay of psychiatric offender patients, prior research has called for the application of a new statistical methodology better accommodating this data structure. The present study attempts to investigate factors contributing to long-term hospitalization of schizophrenic offenders referred to a Swiss forensic institution, using machine learning algorithms that are better suited than conventional methods to detect nonlinear dependencies between variables. Methods: In this retrospective file and registry study, multidisciplinary notes of 143 schizophrenic offenders were reviewed using a structured protocol on patients’ characteristics, criminal and medical history and course of treatment. Via a forward selection procedure, the most influential factors for length of stay were preselected. Machine learning algorithms then identified the most efficient model for predicting length-of-stay. Results: Two factors have been identified as being particularly influential for a prolonged forensic hospital stay, both of which are related to aspects of the index offense, namely (attempted) homicide and the extent of the victim's injury. The results are discussed in light of previous research on this topic. Conclusions: In this study, length of stay was determined by legal considerations, but not by factors that can be influenced therapeutically. Results emphasize that forensic risk assessments should be based on different evaluation criteria and not merely on legal aspects.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Mohamed F. Abd El-Aal ◽  
Ali Algarni ◽  
Aisha Fayomi ◽  
RAahayu Abdul Rahman ◽  
Khudir Alrashidi

This study aims to determine the primary determination of FDI inflow to Egypt using machine learning algorithms and the ARIMA model and get an accurate prediction of FDI inflow to Egypt during the current decade (2020–2030) and approved that the gradient boosting model is the most accurate algorithms. Also, we find stability in economic indicators in Egypt during the current decade using the ARIMA model. The last step approved that the primary determinant of FDI inflow to Egypt is the Human Development Index, followed by population size, gross domestic product per capita, lending rate, and gross domestic product value.


2020 ◽  
Vol 23 (4) ◽  
pp. 304-312
Author(s):  
ShaoPeng Wang ◽  
JiaRui Li ◽  
Xijun Sun ◽  
Yu-Hang Zhang ◽  
Tao Huang ◽  
...  

Background: As a newly uncovered post-translational modification on the ε-amino group of lysine residue, protein malonylation was found to be involved in metabolic pathways and certain diseases. Apart from experimental approaches, several computational methods based on machine learning algorithms were recently proposed to predict malonylation sites. However, previous methods failed to address imbalanced data sizes between positive and negative samples. Objective: In this study, we identified the significant features of malonylation sites in a novel computational method which applied machine learning algorithms and balanced data sizes by applying synthetic minority over-sampling technique. Method: Four types of features, namely, amino acid (AA) composition, position-specific scoring matrix (PSSM), AA factor, and disorder were used to encode residues in protein segments. Then, a two-step feature selection procedure including maximum relevance minimum redundancy and incremental feature selection, together with random forest algorithm, was performed on the constructed hybrid feature vector. Results: An optimal classifier was built from the optimal feature subset, which featured an F1-measure of 0.356. Feature analysis was performed on several selected important features. Conclusion: Results showed that certain types of PSSM and disorder features may be closely associated with malonylation of lysine residues. Our study contributes to the development of computational approaches for predicting malonyllysine and provides insights into molecular mechanism of malonylation.


2020 ◽  
Author(s):  
Johannes Kirchebner ◽  
Moritz Günther ◽  
Martina Sonnweber ◽  
Alice King ◽  
Steffen Lau

Abstract Background: Prolonged forensic psychiatric hospitalizations have raised ethical, economic, and clinical concerns. Due to the confounded nature of factors affecting length of stay of psychiatric offender patients, prior research has called for the application of a new statistical methodology better accommodating this data structure. The present study attempts to investigate factors contributing to long-term hospitalization of schizophrenic offenders referred to a Swiss forensic institution, using machine learning algorithms that are better suited than conventional methods to detect nonlinear dependencies between variables. Methods: In this retrospective file and registry study, multidisciplinary notes of 143 schizophrenic offenders were reviewed using a structured protocol on patients’ characteristics, criminal and medical history and course of treatment. Via a forward selection procedure, the most influential factors for length of stay were preselected. Machine learning algorithms then identified the most efficient model for predicting length-of-stay. Results: Two factors have been identified as being particularly influential for a prolonged forensic hospital stay, both of which are related to aspects of the index offense, namely (attempted) homicide and the extent of the victim's injury. The results are discussed in light of previous research on this topic. Conclusions: In this study, length of stay was determined by legal considerations, but not by factors that can be influenced therapeutically. Results emphasize that forensic risk assessments should be based on different evaluation criteria and not merely on legal aspects.


Sign in / Sign up

Export Citation Format

Share Document