scholarly journals Design and Characterization of Electrochemical Sensor for the Determination of Mercury(II) Ion in Real Samples Based upon a New Schiff Base Derivative as an Ionophore

Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3020
Author(s):  
Salman S. Alharthi ◽  
Ahmed M. Fallatah ◽  
Hamed M. Al-Saidi

The present paper provides a description of the design, characterization, and use of a Hg2+ selective electrode (Hg2+–SE) for the determination of Hg2+ at ultra-traces levels in a variety of real samples. The ionophore in the proposed electrode is a new Schiff base, namely 4-bromo-2-[(4-methoxyphenylimino)methyl]phenol (BMPMP). All factors affecting electrode response including polymeric membrane composition, concentration of internal solution, pH sample solution, and response time were optimized. The optimum response of our electrode was obtained with the following polymeric membrane composition (% w/w): PVC, 32; o-NPOE, 64.5; BMPMP, 2 and NaTPB, 1.5. The potentiometric response of Hg2+–SE towards Hg2+ ion was linear in the wide range of concentrations (9.33 × 10–8−3.98 × 10–3 molL–1), while, the limit of detection of the proposed electrode was 3.98 × 10–8 molL–1 (8.00 μg L–1). The Hg2+–SE responds quickly to Hg2+ ions as the response time of less than 10 s. On the other hand, the slope value obtained for the developed electrode was 29.74 ± 0.1 mV/decade in the pH range of 2.0−9.0 in good agreement with the Nernstian response (29.50 mV/decade). The Hg2+–SE has relatively less interference with other metal ions. The Hg2+–SE was used as an indicator electrode in potentiometric titrations to estimate Hg2+ ions in waters, compact fluorescent lamp, and dental amalgam alloy and the accuracy of the developed electrode was compared with ICP–OES measurement values. Moreover, the new Schiff base (BMPMP) was synthesized and characterized using ATR–FTIR, elemental analysis, 1H NMR, and 13C NMR. The PVC membranes containing BMPMP as an ionophore unloaded and loaded with Hg(II) are reported by scanning electron microscope images (SEM) along with energy-dispersive X-ray spectroscopy (EDX) spectra.

2008 ◽  
Vol 6 (4) ◽  
pp. 607-612 ◽  
Author(s):  
Cecylia Wardak

AbstractA new all plastic sensor for Co2+ ions based on 2-amino-5 (hydroxynaphtyloazo-1′)-1,3,4 thiadiazole (ATIDAN) as ionophore was prepared. The electrode exhibits a low detection limit of 1.5 × 10−6 mol L−1 and almost theoretical Nernstian slope in the activity range 4.0 × 10−6–1 × 10−1 mol L−1 of cobalt ions. The response time of the sensor is less than 10 s and it can be used over a period of 6 months without any measurable divergence in potential. The proposed sensor shows a fairly good selectivity for Co(II) over other metal ions. The electrode was successfully applied for determination of Co2+ in real samples and as an indicator electrode in potentiometric titration of Co2+ ions with EDTA.


2014 ◽  
Vol 92 (4) ◽  
pp. 324-328 ◽  
Author(s):  
Muberra Andac ◽  
Fatih Coldur ◽  
Seda Bilir ◽  
Aysenur Birinci ◽  
Serkan Demir ◽  
...  

A miniaturized solid-contact polyvinyl chloride membrane electrode based on the bis[(2-(hydroxyethylimino)phenolato]copper(II) complex has been prepared for the determination of Cu(II) ion in real samples. The influence of coating membrane composition, pH, and possible interfering cations on the response of the ion-selective electrode was investigated. A number of membranes at different compositions were prepared and their Cu2+ sensing capabilities were investigated. The best results for Cu2+ sensing was obtained for the electrode membrane containing ionophore − 2-nitrophenyloctyl ether – polyvinyl chloride and potassium tetrakis(p-chlorophenyl)borate in a ratio of 4:65:30:1 (w/w, mg), respectively. The prepared electrode exhibited a near-Nernstian response (28.3 mV/decade) to Cu2+ in the concentration range from 1.0 × 10−6 to 1.0 × 10−1 mol/L with a limit of detection of 8.3 × 10−7 mol/L. The potentiometric response of the electrode was independent from the pH of the test solution in the pH range of 3.0–6.0. The electrode has a very short response time, about 15 s, and it can be used over a period of 3 months without any divergence in potential. The electrode has been successfully applied as an indicator electrode in potentiometric titration of Cu(II) ions with ethylenediaminetetraacetic acid and in the determination of Cu(II) in wastewater of the copper processing industry.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 37
Author(s):  
Mayra K. S. Monteiro ◽  
Djalma R. Da Silva ◽  
Marco A. Quiroz ◽  
Vítor J. P. Vilar ◽  
Carlos A. Martínez-Huitle ◽  
...  

This study aims to investigate the applicability of a hybrid electrochemical sensor composed of cork and graphite (Gr) for detecting caffeine in aqueous solutions. Raw cork (RAC) and regranulated cork (RGC, obtained by thermal treatment of RAC with steam at 380 °C) were tested as modifiers. The results clearly showed that the cork-graphite sensors, GrRAC and GrRGC, exhibited a linear response over a wide range of caffeine concentration (5–1000 µM), with R2 of 0.99 and 0.98, respectively. The limits of detection (LOD), estimated at 2.9 and 6.1 µM for GrRAC and GrRGC, suggest greater sensitivity and reproducibility than the unmodified conventional graphite sensor. The low-cost cork-graphite sensors were successfully applied in the determination of caffeine in soft drinks and pharmaceutical formulations, presenting well-defined current signals when analyzing real samples. When comparing electrochemical determinations and high performance liquid chromatography measurements, no significant differences were observed (mean accuracy 3.0%), highlighting the potential use of these sensors to determine caffeine in different samples.


2020 ◽  
Vol 42 (1) ◽  
pp. 31-31
Author(s):  
Malik H Alaloosh Alamri Malik H Alaloosh Alamri ◽  
Sadeem Subhi Abed and Abdulkareem M A Alsammarraie Sadeem Subhi Abed and Abdulkareem M A Alsammarraie

Bendiocarb (BEN) is an acutely toxic carbamate insecticide which used in public places and agriculture, it is also effective against a wide range of nuisance and disease vector insects. A new rapid and sensitive reverse flow injection spectrophotometric procedure coupled with on-line solid-phase reactor is designed in this article for the determination of BEN in its insecticidal formulations and water samples, by using three different solid-phase reactors containing bulk PbO2 (B-SPR), PbO2 nanoparticles (N-SPR) and grafted nanoparticles of SiO2-PbO2 (G-SPR) immobilized on cellulose acetate matrix (CA). This method of oxidative coupling is based on alkaline hydrolysis of the BEN pesticide, and then coupled with N,N dimethyl-p-phenylenediamine sulphate (DMPD) to give a blue color product which measured at λmax 675 nm. It worth to mentioned that under optimal conditions, Beer’s law is obeyed in the range of 1-175 μg mL-1 for B-SPR and 0.25-70 μg mL-1 of BEN for both N-SPR and G-SPR respectively within limit of detection (LOD) of 0.931, 0.234 and 0.210 μg mL-1 for B-SPR N-SPR and G-SPR respectively. The surface methodology of the solid phase was also investigated by using atomic force microscopy.


2020 ◽  
Vol 10 (3) ◽  
pp. 245-255
Author(s):  
Mahsa Hasanzadeh ◽  
Zahra Hasanzadeh ◽  
Sakineh Alizadeh ◽  
Mehran Sayadi ◽  
Mojtaba Nasiri Nezhad ◽  
...  

CuxO-NiO nanocomposite film for the non-enzymatic determination of glucose was prepared by the novel modifying method. At first, anodized Cu electrode was kept in a mixture solution of CuSO4, NiSO4 and H2SO4 for 15 minutes. Then, a cathodization process with a step potential of -6 V in a mixture solution of CuSO4 and NiSO4 was initiated, generating formation of porous Cu-Ni film on the bare Cu electrode by electrodeposition assisted by the release of hydrogen bubbles acting as soft templates. Optimized conditions were determined by the experimental design software for electrodeposition process. Afterward, Cu-Ni modified electrode was scanned by cyclic voltammetry (CV) method in NaOH solution to convert Cu and Ni nanoparticles to the nano-scaled CuxO-NiO film. The electrocatalytic behavior of the novel CuxO-NiO film toward glucose oxidation was studied by CV and chronoamperometry (CHA) techniques. The calibration curve of glucose was found linear in a wide range of 0.04–5.76 mM, with a low limit of detection (LOD) of 7.3 µM (S/N = 3) and high sensitivity (1.38 mA mM-1 cm-2). The sensor showed high selectivity against some usual interfering species and high stability (loss of only 6.3 % of its performance over one month). The prepared CuxO-NiO nanofilm based sensor was successfully applied for monitoring glucose in human blood serum and urine samples.


2011 ◽  
Vol 8 (s1) ◽  
pp. S203-S210 ◽  
Author(s):  
Hassan Ali Zamani ◽  
Zynab Rafati ◽  
Soraia Meghdadi

In this work, we report as new Tb3+-PVC membrane sensor based onN,N’-bis(pyrrolylmethylene)- 2-aminobenzylamine (PMA) as a suitable ion carrier. Poly vinylchloride (PVC)-based membrane composed of PMA with oleic acid (OA) as anionic additives and acetophenone (AP) as plasticizing solvent mediators. The Tb3+sensor exhibits a Nernstian slope of 19.7±0.4 mV per decade over the concentration range of 1.0×10-5to 1.0×10-2M and a detection limit of 4.6×10-6M of Tb3+ions. The potentiometric response of the sensor is independent of the solution pH in the range of 2.9–8.1. It has a very short response time, in the whole concentration range (∼5 s). The recommended sensor revealed comparatively good selectivity with respect to most alkali, alkaline earth, some transition and heavy metal ions. It was successfully employed as an indicator electrode in the potentiometric titration of Tb(III) ions with EDTA. The electrode was also employed for the determination of the fluoride ion in two mouth wash preparations and the determination of Tb3+ions concentration in mixtures of three different ions.


2012 ◽  
Vol 9 (4) ◽  
pp. 1941-1950 ◽  
Author(s):  
Hassan Ali Zamani ◽  
Mojdeh Zaferoni ◽  
Soraia Meghdadi

The N-benzoylethylidene-2-aminobenzylamine (BEA) was used as a suitable ionophore in construction of neodymium ion selective electrode. The electrode with composition of 30% PVC, 58% solvent mediator (NB), 2% ionophore (BEA) and 10% anionic additive (OA) shows the best potentiometric response characteristics. The Nd3+sensor exhibits a Nernstian slope of 21.2 ± 0.2 mV decade-1over the concentration range of 1.0 × 10-6to 1.0 × 10-2mol L-1, and a detection limit of 6.3 × 10-7mol L-1of Nd3+ions. The potentiometric response of the sensor is independent of the solution pH in the range of 2.4–8.5. It has a very short response time, in the whole concentration range (~7 s), and can be used for at least eight weeks. The proposed sensor revealed high selectivity with respect to all common alkali, alkaline earth, transition and heavy metal ions, including members of the lanthanide family other than Nd3+. The Nd3+sensor was successfully applied as an indicator electrode in the potentiometric titration of Nd3+ions with EDTA. The electrode was also employed for the determination of the fluoride ion in two mouth wash preparations.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Dinh Quang Khieu ◽  
Mai Thi Thanh ◽  
Tran Vinh Thien ◽  
Nguyen Hai Phong ◽  
Duc Hoang Van ◽  
...  

Zeolite imidazole framework-8 (ZIF-8) was prepared by the hydrothermal process. The obtained ZIF-8 was a characteristic of X-ray-diffraction (XRD), transmission electron microscope (TEM), thermal gravity-differential thermal analysis (TG-DTA), and dynamic light scattering (DLS). The obtained ZIF-8 possessed large specific area and was highly dispersed. Its morphology consisted of nanospherical particles with 30–50 nm in diameter. Chemical stability of ZIF-8 in different conditions was studied. The ZIF-8 was used as an electrode modifier for the determination of trace levels of lead. The parameters including solvents and solution pH were investigated. The repeatability, reproducibility, accuracy, linear range, limit of detection, and limit of quantitation were also addressed. The results showed that ZIF-8 is a potential electrode modifier for differential pulse anodic stripping method to determine Pb(II) in aqueous solution.


2010 ◽  
Vol 88 (6) ◽  
pp. 533-539 ◽  
Author(s):  
Larissa Zuppardo Lacerda Sabino ◽  
Daniele Cestari Marino ◽  
Horacio Dorigan Moya

A simple method was developed for determining microquantities of diltiazem, based on the reduction of copper(II) in buffered solution (pH 7.0) and the use of a micellar medium containing 4,4′-dicarboxy-2,2′-biquinoline acid. The copper(I) produced reacts with 4,4′-dicarboxy-2,2′-biquinoline acid and the complexes formed are spectrophotometrically measured at 558 nm. A typical calibration graph shows good linearity (r = 0.993) from 20 to 100 μg mL–1 of diltiazem. The limit of detection and relative standard deviation were calculated as 12 μg mL–1 (99% confidence level) and 3.5% (40 μg mL–1; n = 6), respectively, with a mean recovery value of 96.5% found in pharmaceutical dosages. A straightforward and effective way to recycle the reagents is addressed. The hazardous aspects of the Cu(I)–BCA reaction are presented as well.


1981 ◽  
Vol 64 (6) ◽  
pp. 1356-1363 ◽  
Author(s):  
Mary V Howell ◽  
Philip W Taylor

Abstract A sensitive, reliable, and economical method for the determination of 6 mycotoxins in mixed feeds is described. The feed is extracted with chloroform-water and the extract is cleaned up by using a disposable Sep-Pak silica cartridge. The procedure requires less time (15 min from sample extraction to extract preparation) and less solvent (approximately one-tenth) compared with conventional methods and is suitable for a fast, economical screen. Additional cleanup procedures, involving dialysis or extraction into base, are described for samples containing high levels of interfering compounds. Thin layer chromatography (TLC) and high performance liquid chromatography (HPLC) with fluorescence detection are described for identification and estimation of mycotoxins. The method has been applied to a wide range of mixed feeds, including laboratory animal diets, and raw materials. The limit of detection is 1 μg/kg for all mycotoxins measured by HPLC.


Sign in / Sign up

Export Citation Format

Share Document